Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a...Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.展开更多
Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high tempera...Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well.展开更多
Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for hi...Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM.展开更多
Existing experimental results have shown that using a semi-log linear relationship between the permanent volumetric strain and cyclic number underestimates the volumetric deformation of rockfill materials with a large...Existing experimental results have shown that using a semi-log linear relationship between the permanent volumetric strain and cyclic number underestimates the volumetric deformation of rockfill materials with a large cyclic number, and that the error increases with the confining pressure. The existing permanent deformation models are not suitable for the seismic safety analysis of high dams during strong earthquakes. In this study, a series of large-scale triaxial cyclic loading tests of rockfill materials were performed, and a new permanent deformation model of rockfill materials was developed and validated with three kinds of rockfill materials. The results show that the proposed model can properly reflect the general features of the permanent deformation of rockfill materials. The main features of the model are as follows:(1) relations between the cyclic number and permanent volumetric/shear strain are described by hyperbolic functions, which can avoid underestimating the volumetric deformation occurring during strong earthquakes;(2) the model can capture the effect of the mean effective stress on the permanent volumetric strain, with greater confining pressure correlating to greater permanent volumetric deformation, and the permanent volumetric strain under low confining pressure near the dam crest can be well represented; and(3) the model can reflect the effect of the consolidation stress ratio on the permanent shear strain.展开更多
Unbound granular material specifications for road pavements in Australia are primarily based on physical material specification rather than mechanical characterisation. This simplified approach does not reflect the ac...Unbound granular material specifications for road pavements in Australia are primarily based on physical material specification rather than mechanical characterisation. This simplified approach does not reflect the actual material performance under repeated dynamic traffic loads. There is a little information available on the influence of the local crushed rock properties and compacted layer properties on permanent deformation (PD). This study aims to characterise the local unbound granular materials in Victoria according to their PD behaviour under repeated loads and to develop a suitable shakedown criterion that could describe the PD of the tested materials to simplify the flexible pavement design. Repeated-load triaxial tests were conducted over several samples with a range of moisture contents, gradations, densities, and stress conditions. The laboratory test results showed that PD behaviour was influenced by several factors. In addition, the tested subbase-specified unbound granular materials reflect high PD resistance that is almost equivalent to basequality unbound granular materials. This may indicate that current requirements for the subbase-quality unbound granular materials are over-prescribe. Moreover, as the existing shakedown criterion was not applicable for the multi-stage repeated-load triaxial test and the local tested materials, a new shakedown criterion and new boundaries are proposed based on the PD behaviour. In the proposed criterion, the shakedown ranges are identified based on the curve angle of the PD vs. logarithm of the number of loading cycles, and this new criterion was validated using several materials from existing literature. The local tested base and subbase materials can be assigned as Range A when PD\1%, Range B when 1%\PD\3%, and Range C when PD[3%. The proposed criterion could provide a useful and quick approach to assess the PD of the unbound granular materials with both single and multistages of stresses.展开更多
Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,...Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.展开更多
An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited cap...An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited capacity and operational plan in workshop level based on the basic data of flow chart are formulated by this model which applied JIT idea and based on customer order demand. Push production is adapted during execution phase combined with process flow cards. The model is helpful to reduce inventory,keep certain flexbility of production and improve continuity and equilibrium of manufacturing process.展开更多
BACKGROUND While gelatin sponge particles and calibrated microspheres are commonly used as embolic materials in conventional transarterial chemoembolization(cTACE),direct comparisons between these embolic agents are r...BACKGROUND While gelatin sponge particles and calibrated microspheres are commonly used as embolic materials in conventional transarterial chemoembolization(cTACE),direct comparisons between these embolic agents are rare.AIM To compare the efficacy and safety of superselective cTACE using Embosphere®or Marine gel®in patients with early-stage hepatocellular carcinoma(HCC).METHODS This retrospective study included 70 patients with small(<4 cm)HCC who underwent cTACE with Embosphere®(n=33)or Marine gel®(n=37)as the embolic agent at a single center between March 2021 and July 2022.The radiologic images and clinical data were retrospectively reviewed,with an emphasis on tumor response,procedure-related complications,and local tumor recurrence.The primary index tumor was assessed on a 1-mo follow-up image,and local progression-free survival was obtained using the Kaplan-Meier method and was compared by the log-rank test.RESULTS The median tumor size of both groups was 1.5 cm,and 69 patients achieved a complete response one month after cTACE.The cumulative local recurrence rate at 12 mo was 15.5%in the Embosphere®group and 14.4%in the Marine gel®group.The local progression-free survival was not significantly different between the two groups(P=0.83).In the multivariate analysis,high serum alphafetoprotein was the only significant poor prognostic factor for local tumor progression(P=0.01).Postembolization syndrome occurred in 36.4%of the Embosphere®group and 35.1%of the Marine gel®group,and there were no cases of biloma,biliary duct dilation,or liver abscess in either group.CONCLUSION Calibrated gelatin sponge particles(Marine gel®)and calibrated microspheres(Embosphere®)have similar outcomes in terms of tumor response for superselective cTACE of small HCC.展开更多
Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the ...Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the resistivity anisotropy P⊥/P∥ lies in the range 486-615 for different compounds at 2K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near Tcow = 284(3)K, 316(3)K, 359(3)K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3)K, 161(3)K, 108(3)K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalenee in these compounds. Antiferromagnetie-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.展开更多
China has the world’s largest reserves of rare earth elements.Rare earth permanent magnet material has always been one of the popular industries in the investment market.CAPM is the basic asset-pricing model in finan...China has the world’s largest reserves of rare earth elements.Rare earth permanent magnet material has always been one of the popular industries in the investment market.CAPM is the basic asset-pricing model in financial economics.There are a number of studies conducted to examine the applicability of CAPM to stock markets in different industries and to investigate the modification method to improve the model’s prediction accuracy.In this study,seven leading enterprises in China’s rare earth permanent magnet material industry listed on the A-share market were selected as the research subjects.Based on CAPM,regression analysis was conducted on the monthly data from March 2016 to February 2022.The results demonstrated that using the β coefficient to explain the risk of China’s rare earth permanent magnet industry is ineffective.The ultimate benefit was less affected by market indexes but mainly by non-systematic risks.CAPM has low applicability to China’s rare earth permanent magnet material industry and requires further improvement.Nevertheless,CAPM still has some guiding significance in making enterprise comparisons and investment decisions.展开更多
实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中,通过将Lu^(3+)离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改...实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中,通过将Lu^(3+)离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改善YAG∶Ce荧光材料的发光性能。采用固相反应和真空烧结法制Article ID:1000-7032(2023)06-0964^(-1)1收稿日期:2022^(-1)2-31;修订日期:2023-01-30基金项目:中国科学院战略性先导科技专项(XDA22010301)Supported by The Strategic Priority Research Program of The Chinese Academy of Sciences(XDA22010301)第6 HUANG Xinyou期,et al.:LuYAG∶Ce Transparent Ceramic Phosphors for High-brightness Solid-state…备了不同Lu^(3+)含量的(Lu,Y)_(3)Al_(5)O_(12)∶Ce荧光陶瓷(LuYAG∶Ce荧光陶瓷)。随着Lu^(3+)含量的增加,LuYAG∶Ce荧光陶瓷中的Y^(3+)位点被Lu^(3+)位点取代,Ce^(3+)的发射峰呈现从573 nm到563 nm的蓝移现象。当Lu^(3+)含量为60%时,通过将LuYAG∶Ce荧光陶瓷与蓝光LED组合,其发光强度达到最大值,流明效率达到114 lm∙W^(-1)。使用450 nm激光源与LuYAG∶Ce荧光陶瓷构建了透射模式下的激光驱动照明装置。随着功率密度从2.2 W·mm^(-2)增加到39 W·mm^(-2),Lu^(3+)含量为60%的荧光陶瓷光通量从128 lm增加到1874 lm,且没有发光饱和的迹象,最佳发光效率达到128 lm·W^(-1)。因此,LuYAG∶Ce荧光陶瓷有望成为高功率LED/LD照明的潜在荧光转换材料。展开更多
Repeated load triaxial test is used to assess the deformation behaviour of unbound granular materials(UGMs) in flexible road pavements. Repeated load pulse characteristics(i.e. shape, loading period and rest period) a...Repeated load triaxial test is used to assess the deformation behaviour of unbound granular materials(UGMs) in flexible road pavements. Repeated load pulse characteristics(i.e. shape, loading period and rest period) are the stress configurations used in the experimental set-up to simulate the passing axle loads. Some researchers and standard testing protocols suggest a rest period of varying durations after a loading phase. A thorough review of existing literature and practises has revealed that there is no agreement about the effect of the rest period of vertical stress pulse on the deformation behaviour of the UGMs. Therefore,the main objective of this study is to investigate the effect of repeated stress rest period on the deformation behaviour of UGMs experimentally. Experiments are conducted, both with and without rest period, using basalt and granite crushed rocks from Victoria, Australia. Furthermore, in order to gain insight into the effect of the rest period, finite element modelling is also developed. Both the experimental and modelling results show that the rest period has a noticeable effect on both resilient and permanent deformation behaviours of UGMs. It is, therefore, recommended to take extra precautions while adopting a particular standard testing protocol and to supplement the results by additional tests with different loading configurations.展开更多
The translucent GGAG:Ce/glass composites are prepared successfully by ball-milling,tableting,and pressureless sintering.The thickness of composites is about 400μm.The x-ray diffraction(XRD),differential scanning calo...The translucent GGAG:Ce/glass composites are prepared successfully by ball-milling,tableting,and pressureless sintering.The thickness of composites is about 400μm.The x-ray diffraction(XRD),differential scanning calorimetry(DSC),density of composite materials are measured and discussed systematically.The scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS)elemental mapping are employed to analyze the particle size,the shape of powders,and the distribution of GGAG:Ce particles in the glass matrix,respectively.The decay time,ultraviolet,(UV),x-ray excitation luminescence spectra,and temperature spectra are studied.The results show that the composite materials have high light output,good thermostability,and short decay time.The method adopted in this work is an effective method to reduce the preparation time and cost of the sample.The ultralow afterglow indicates that the composite materials have an opportunity to be used for x-ray detection and imaging.展开更多
This review summarizes the recent advances on the application of ^(57)Fe Mössbauer spectrometry to study the magnetic and phase characteristics of Nd–Fe–B-based permanent magnets. First of all, the hyperfine st...This review summarizes the recent advances on the application of ^(57)Fe Mössbauer spectrometry to study the magnetic and phase characteristics of Nd–Fe–B-based permanent magnets. First of all, the hyperfine structures of the Ce_(2)Fe_(14)B,(Ce,Nd)_(2)Fe_(14)B and MM_(2)Fe_(14)B phases are well-defined by using the model based on the Wigner-Seitz analysis of the crystal structure. The results show that the isomer shift δ and the quadrupole splitting öEQ of those 2:14:1 phases show minor changes with the Nd content, while the hyperfine field Bhfincreases monotonically with increasing Nd content and its value is influenced by the element segregation and phase separation in the 2:14:1 phase. Then, the hyperfine structures of the low fraction secondary phases are determined by the ^(57)Fe Mössbauer spectrometry due to its high sensitivity. On this basis,the content, magnetic behavior, and magnetization of the REFe_(2) phase, the amorphous grain boundary(GB) phase, and the amorphous worm-like phase, as well as their effects on the magnetic properties, are systematically studied.展开更多
Nanocrystalline Nd 8.5 Fe 75 Co 5Cu 1Zr 3Nb 1B 6.5 ribbons were prepared by melt spun (18 m·s -1 ) and subsequent heat treatment (670 ℃/4 min). Excellent magnetic properties of the bonded m...Nanocrystalline Nd 8.5 Fe 75 Co 5Cu 1Zr 3Nb 1B 6.5 ribbons were prepared by melt spun (18 m·s -1 ) and subsequent heat treatment (670 ℃/4 min). Excellent magnetic properties of the bonded magnet were achieved as follows: B r=0.68 T (6 8 kGs), J H c=620.3 kA·m -1 (7.8 kOe), ( BH ) max =74 kJ·m -3 (9 3 MGOe). The results of TEM photomicrographs confirm that the appearance of α Fe phase is earlier than that of Nd 2Fe 14 B phase during crystallization process. The addition of Cu and Zr elements shows to be advantageous to the improvement of an intrinsic coercivity and squareness of hysteresis loop, as well as energy product.展开更多
The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in r...The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.展开更多
Mn-based intermetallic compounds have attracted much attention due to their fascinating structural and physical properties,especially their interesting hard magnetic properties.In this paper,we have summarized the mag...Mn-based intermetallic compounds have attracted much attention due to their fascinating structural and physical properties,especially their interesting hard magnetic properties.In this paper,we have summarized the magnetic and structural properties of Mn-based intermetallic compounds(Mn X,where X=Al,Bi,and Ga).Various methods for synthesizing single phases of MnAl,MnBi,and Mnx Ga were developed in our lab.A very high saturation magnetization of 125 emu/g,coercivity of 5 kOe,and maximum energy product(BH)_(max)of 3.1 MG·Oe were achieved at room temperature for the pureτ-Mn–Al magnetic phase without carbon doping and the extrusion process.Low temperature phase(LTP)MnBi with a purity above 95 wt.%can be synthesized.An abnormal temperature coefficient of the coercivity was observed for the LTP MnBi magnet.Its coercivity increased with temperature from 100 K to 540 K,reached a maximum of 2.5 T at about540 K,and then decreased slowly to 1.8 T at 610 K.The positive temperature coefficient of the coercivity is related to the evolution of the structure and magnetocrystalline anisotropy field of the LTP MnBi phase with temperature.The LTP MnBi bonded magnets show maximum energy products(BH)_(max)of 8.9 MG·Oe(70 kJ/m^(3))and 5.0 MG·Oe(40 k J/m^(3))at room temperature and 400 K,respectively.Ferrimagnetic Mn_(x)Ga phases with L10 structures(x〈2.0)and D0_(22)structures(x〉2.0)were obtained.All of the above structures can be described by a D0_(22)supercell model in which 2 a-Ga and 2 b-Mn are simultaneously substituted.The tetragonal D0_(22)phases of the Mn_(x)Ga show high coercivities ranging from 7.2 kOe for low Mn content x=1.8 to 18.2 kOe for high Mn content x=3 at room temperature.The Mn_(1.2)Ga sample exhibits a room temperature magnetization value of 80 emu/g.The hard magnetic properties of coercivityiH_(c)=3.5 kOe,remanence M_(r)=43.6 emu/g,and(BH)_(max)=2.5 MG·Oe were obtained at room temperature.Based on the above studies,we believe that Mn-based magnetic materials could be promising candidates for rare earth free permanent magnets exhibiting a high Curie temperature,high magnetocrystalline anisotropy,and very high coercivity.展开更多
基金Project(1053320222852)supported by the Graduate Student Innovation Program of Central South University,China。
文摘Permanent ferrite magnet materials are extensively employed due to their exceptional magnetic properties and cost-effectiveness.The fast development in electromobile and household appliance industries contributes to a new progress in permanent ferrite materials.This paper reviews the deveolpement and progress of permanent ferrite magnet industry in recent years.The emergence of new raw material,the advancement of perparation methods and manufacturing techniques,and the potential applications of permanent ferrite materials are introduced and discussed.Specifically,nanocrystallization plays a crucial role in achieving high performance at a low cost and reducing reliance on rare earth resources,and therefore it could be a promising development trendency.
基金supported by the National Natural Science Foundation of China (Nos. 51071010 and 50925101)the Innovation Foundation of Beihang University for Ph.D. Graduates
文摘Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well.
基金supported by the National Natural Science Foundation of China under project 52007047the Outstanding Youth Innovation Project funded by State Key Laboratory of Reliability and Intelligence of Electrical Equipment EERI_OY2021005。
文摘Permanent magnet claw pole machine(PMCPM) is a special kind of transverse flux permanent magnet machine. Compared with other electrical machines, it has the advantages of high torque density and high efficiency for high speed operation. However, because of its complex irregular structure, the manufacturing process using silicon sheets is complicated. Soft magnetic composite material(SMC) is manufactured by powder metallurgy technology, which can produce various shapes of stator core structures, so it is easier to produce various irregular shapes of the stator core. However, the raw SMC material is relatively expensive, and the mechanical strength of SMC is weak. In this paper, a PMCPM with hybrid cores is proposed. With the adoption of hybrid silicon sheet-SMC cores and amorphous alloy-SMC cores, the torque ability of PMCPM can be improved greatly and it can have higher efficiency for more wide operation frequency. Meanwhile, its mechanical strength has been improved and it can be designed for high torque direct drive applications as it is a modular machine. Furthermore, three methods are proposed to reduce the additional eddy current loss which resulted from the employment of hybrid cores in PMCPM.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0404904)the National Natural Science Foundation of China(Grants No.51608095,51779034,and 51678113)the Fundamental Research Funds for the Central Universities(Grant No.DUT17ZD219)
文摘Existing experimental results have shown that using a semi-log linear relationship between the permanent volumetric strain and cyclic number underestimates the volumetric deformation of rockfill materials with a large cyclic number, and that the error increases with the confining pressure. The existing permanent deformation models are not suitable for the seismic safety analysis of high dams during strong earthquakes. In this study, a series of large-scale triaxial cyclic loading tests of rockfill materials were performed, and a new permanent deformation model of rockfill materials was developed and validated with three kinds of rockfill materials. The results show that the proposed model can properly reflect the general features of the permanent deformation of rockfill materials. The main features of the model are as follows:(1) relations between the cyclic number and permanent volumetric/shear strain are described by hyperbolic functions, which can avoid underestimating the volumetric deformation occurring during strong earthquakes;(2) the model can capture the effect of the mean effective stress on the permanent volumetric strain, with greater confining pressure correlating to greater permanent volumetric deformation, and the permanent volumetric strain under low confining pressure near the dam crest can be well represented; and(3) the model can reflect the effect of the consolidation stress ratio on the permanent shear strain.
文摘Unbound granular material specifications for road pavements in Australia are primarily based on physical material specification rather than mechanical characterisation. This simplified approach does not reflect the actual material performance under repeated dynamic traffic loads. There is a little information available on the influence of the local crushed rock properties and compacted layer properties on permanent deformation (PD). This study aims to characterise the local unbound granular materials in Victoria according to their PD behaviour under repeated loads and to develop a suitable shakedown criterion that could describe the PD of the tested materials to simplify the flexible pavement design. Repeated-load triaxial tests were conducted over several samples with a range of moisture contents, gradations, densities, and stress conditions. The laboratory test results showed that PD behaviour was influenced by several factors. In addition, the tested subbase-specified unbound granular materials reflect high PD resistance that is almost equivalent to basequality unbound granular materials. This may indicate that current requirements for the subbase-quality unbound granular materials are over-prescribe. Moreover, as the existing shakedown criterion was not applicable for the multi-stage repeated-load triaxial test and the local tested materials, a new shakedown criterion and new boundaries are proposed based on the PD behaviour. In the proposed criterion, the shakedown ranges are identified based on the curve angle of the PD vs. logarithm of the number of loading cycles, and this new criterion was validated using several materials from existing literature. The local tested base and subbase materials can be assigned as Range A when PD\1%, Range B when 1%\PD\3%, and Range C when PD[3%. The proposed criterion could provide a useful and quick approach to assess the PD of the unbound granular materials with both single and multistages of stresses.
文摘Several available mechanistic-empirical pavement design methods fail to include predictive model for permanent deformation(PD)of unbound granular materials(UGMs),which make these methods more conservative.In addition,there are limited regression models capable of predicting the PD under multistress levels,and these models have regression limitations and generally fail to cover the complexity of UGM behaviour.Recent researches are focused on using new methods of computational intelligence systems to address the problems,such as artificial neural network(ANN).In this context,we aim to develop an artificial neural model to predict the PD of UGMs exposed to repeated loads.Extensive repeated load triaxial tests(RLTTs)were conducted on base and subbase materials locally available in Victoria,Australia to investigate the PD properties of the tested materials and to prepare the database of the neural networks.Specimens were prepared over different moisture contents and gradations to cover a wide testing matrix.The ANN model consists of one input layer with five neurons,one hidden layer with twelve neurons,and one output layer with one neuron.The five inputs were the number of load cycles,deviatoric stress,moisture content,coefficient of uniformity,and coefficient of curvature.The sensitivity analysis showed that the most important indicator that impacts PD is the number of load cycles with influence factor of 41%.It shows that the ANN method is rapid and efficient to predict the PD,which could be implemented in the Austroads pavement design method.
基金supported by Ministry of Education Social Science and Humanities Fund(12YJA630187)SHANNXI Social Science Fund(10Q067)High Education Research Fund of Northwestern Polytechnical University(2014)
文摘An integrated production planning and control model based on MRPⅡand JIT is put forward through analyzing the characteristics of magnetic materials manufacturing companies. Master Production Schedule with limited capacity and operational plan in workshop level based on the basic data of flow chart are formulated by this model which applied JIT idea and based on customer order demand. Push production is adapted during execution phase combined with process flow cards. The model is helpful to reduce inventory,keep certain flexbility of production and improve continuity and equilibrium of manufacturing process.
文摘BACKGROUND While gelatin sponge particles and calibrated microspheres are commonly used as embolic materials in conventional transarterial chemoembolization(cTACE),direct comparisons between these embolic agents are rare.AIM To compare the efficacy and safety of superselective cTACE using Embosphere®or Marine gel®in patients with early-stage hepatocellular carcinoma(HCC).METHODS This retrospective study included 70 patients with small(<4 cm)HCC who underwent cTACE with Embosphere®(n=33)or Marine gel®(n=37)as the embolic agent at a single center between March 2021 and July 2022.The radiologic images and clinical data were retrospectively reviewed,with an emphasis on tumor response,procedure-related complications,and local tumor recurrence.The primary index tumor was assessed on a 1-mo follow-up image,and local progression-free survival was obtained using the Kaplan-Meier method and was compared by the log-rank test.RESULTS The median tumor size of both groups was 1.5 cm,and 69 patients achieved a complete response one month after cTACE.The cumulative local recurrence rate at 12 mo was 15.5%in the Embosphere®group and 14.4%in the Marine gel®group.The local progression-free survival was not significantly different between the two groups(P=0.83).In the multivariate analysis,high serum alphafetoprotein was the only significant poor prognostic factor for local tumor progression(P=0.01).Postembolization syndrome occurred in 36.4%of the Embosphere®group and 35.1%of the Marine gel®group,and there were no cases of biloma,biliary duct dilation,or liver abscess in either group.CONCLUSION Calibrated gelatin sponge particles(Marine gel®)and calibrated microspheres(Embosphere®)have similar outcomes in terms of tumor response for superselective cTACE of small HCC.
基金Supported by the National Basic Research Program of China under Grant No 2015CB921303the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant No XDB07020100
文摘Single crystals of RSeTe2 (R =La, Ce, Pr, Nd) are synthesized using LiC1/RbCI flux. Transport and magnetic properties in the directions parallel and perpendicular to the a-c plane are investigated. We find that the resistivity anisotropy P⊥/P∥ lies in the range 486-615 for different compounds at 2K, indicating the highly two-dimensional character. In both the orientations, the charge-density-wave transitions start near Tcow = 284(3)K, 316(3)K, 359(3)K for NdSeTe2, PrSeTe2, CeSeTe2, respectively, with a considerable increase in dc resistivity. While for LaSeTe2, no obvious resistivity anomaly is observed up to 380K. The value of TCDW increases monotonically with the increasing lattice parameters. Below TCDW, slight anomalies can be observed in NdSeTe2, PrSeTe2 and CeSeTe2 with onset temperature at 193(3)K, 161(3)K, 108(3)K, respectively, decreasing as lattice parameters increase. Magnetic susceptibility measurements show that the valence state of rare earth ions are trivalenee in these compounds. Antiferromagnetie-type magnetic order is formed in CeSeTe2 at 2.1 K, while no magnetic transition is observed in PrSeTe2 and NdSeTe2 down to 1.8 K.
文摘China has the world’s largest reserves of rare earth elements.Rare earth permanent magnet material has always been one of the popular industries in the investment market.CAPM is the basic asset-pricing model in financial economics.There are a number of studies conducted to examine the applicability of CAPM to stock markets in different industries and to investigate the modification method to improve the model’s prediction accuracy.In this study,seven leading enterprises in China’s rare earth permanent magnet material industry listed on the A-share market were selected as the research subjects.Based on CAPM,regression analysis was conducted on the monthly data from March 2016 to February 2022.The results demonstrated that using the β coefficient to explain the risk of China’s rare earth permanent magnet industry is ineffective.The ultimate benefit was less affected by market indexes but mainly by non-systematic risks.CAPM has low applicability to China’s rare earth permanent magnet material industry and requires further improvement.Nevertheless,CAPM still has some guiding significance in making enterprise comparisons and investment decisions.
文摘实现高发光效率、高亮度和良好的热稳定性是固态照明的迫切要求。因此,用于高功率发光二极管或激光二极管(LED/LD)的高性能荧光转换材料具有重要的研究意义。在这项工作中,通过将Lu^(3+)离子引入YAG∶Ce荧光陶瓷中方法作为有效策略来改善YAG∶Ce荧光材料的发光性能。采用固相反应和真空烧结法制Article ID:1000-7032(2023)06-0964^(-1)1收稿日期:2022^(-1)2-31;修订日期:2023-01-30基金项目:中国科学院战略性先导科技专项(XDA22010301)Supported by The Strategic Priority Research Program of The Chinese Academy of Sciences(XDA22010301)第6 HUANG Xinyou期,et al.:LuYAG∶Ce Transparent Ceramic Phosphors for High-brightness Solid-state…备了不同Lu^(3+)含量的(Lu,Y)_(3)Al_(5)O_(12)∶Ce荧光陶瓷(LuYAG∶Ce荧光陶瓷)。随着Lu^(3+)含量的增加,LuYAG∶Ce荧光陶瓷中的Y^(3+)位点被Lu^(3+)位点取代,Ce^(3+)的发射峰呈现从573 nm到563 nm的蓝移现象。当Lu^(3+)含量为60%时,通过将LuYAG∶Ce荧光陶瓷与蓝光LED组合,其发光强度达到最大值,流明效率达到114 lm∙W^(-1)。使用450 nm激光源与LuYAG∶Ce荧光陶瓷构建了透射模式下的激光驱动照明装置。随着功率密度从2.2 W·mm^(-2)增加到39 W·mm^(-2),Lu^(3+)含量为60%的荧光陶瓷光通量从128 lm增加到1874 lm,且没有发光饱和的迹象,最佳发光效率达到128 lm·W^(-1)。因此,LuYAG∶Ce荧光陶瓷有望成为高功率LED/LD照明的潜在荧光转换材料。
文摘Repeated load triaxial test is used to assess the deformation behaviour of unbound granular materials(UGMs) in flexible road pavements. Repeated load pulse characteristics(i.e. shape, loading period and rest period) are the stress configurations used in the experimental set-up to simulate the passing axle loads. Some researchers and standard testing protocols suggest a rest period of varying durations after a loading phase. A thorough review of existing literature and practises has revealed that there is no agreement about the effect of the rest period of vertical stress pulse on the deformation behaviour of the UGMs. Therefore,the main objective of this study is to investigate the effect of repeated stress rest period on the deformation behaviour of UGMs experimentally. Experiments are conducted, both with and without rest period, using basalt and granite crushed rocks from Victoria, Australia. Furthermore, in order to gain insight into the effect of the rest period, finite element modelling is also developed. Both the experimental and modelling results show that the rest period has a noticeable effect on both resilient and permanent deformation behaviours of UGMs. It is, therefore, recommended to take extra precautions while adopting a particular standard testing protocol and to supplement the results by additional tests with different loading configurations.
基金the National Natural Science Foundation of China(Grant Nos.11975220,51972291,11575170,and 11605194)。
文摘The translucent GGAG:Ce/glass composites are prepared successfully by ball-milling,tableting,and pressureless sintering.The thickness of composites is about 400μm.The x-ray diffraction(XRD),differential scanning calorimetry(DSC),density of composite materials are measured and discussed systematically.The scanning electron microscopy(SEM)and energy dispersive spectrometer(EDS)elemental mapping are employed to analyze the particle size,the shape of powders,and the distribution of GGAG:Ce particles in the glass matrix,respectively.The decay time,ultraviolet,(UV),x-ray excitation luminescence spectra,and temperature spectra are studied.The results show that the composite materials have high light output,good thermostability,and short decay time.The method adopted in this work is an effective method to reduce the preparation time and cost of the sample.The ultralow afterglow indicates that the composite materials have an opportunity to be used for x-ray detection and imaging.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY20E010002,LR18E010001,and LD19E010001)the National Natural Science Foundation of China(Grant Nos.U1704253 and 51801047)+2 种基金Liaoning Revitalization Talents Program(Grant No.XLYC1807177)the Key Research and Development plan of Zhejiang Province,China(Grant No.2020C05014)Ten Thousand Talents Plan of Zhejiang Province,China(Grant No.2018R52003)。
文摘This review summarizes the recent advances on the application of ^(57)Fe Mössbauer spectrometry to study the magnetic and phase characteristics of Nd–Fe–B-based permanent magnets. First of all, the hyperfine structures of the Ce_(2)Fe_(14)B,(Ce,Nd)_(2)Fe_(14)B and MM_(2)Fe_(14)B phases are well-defined by using the model based on the Wigner-Seitz analysis of the crystal structure. The results show that the isomer shift δ and the quadrupole splitting öEQ of those 2:14:1 phases show minor changes with the Nd content, while the hyperfine field Bhfincreases monotonically with increasing Nd content and its value is influenced by the element segregation and phase separation in the 2:14:1 phase. Then, the hyperfine structures of the low fraction secondary phases are determined by the ^(57)Fe Mössbauer spectrometry due to its high sensitivity. On this basis,the content, magnetic behavior, and magnetization of the REFe_(2) phase, the amorphous grain boundary(GB) phase, and the amorphous worm-like phase, as well as their effects on the magnetic properties, are systematically studied.
文摘Nanocrystalline Nd 8.5 Fe 75 Co 5Cu 1Zr 3Nb 1B 6.5 ribbons were prepared by melt spun (18 m·s -1 ) and subsequent heat treatment (670 ℃/4 min). Excellent magnetic properties of the bonded magnet were achieved as follows: B r=0.68 T (6 8 kGs), J H c=620.3 kA·m -1 (7.8 kOe), ( BH ) max =74 kJ·m -3 (9 3 MGOe). The results of TEM photomicrographs confirm that the appearance of α Fe phase is earlier than that of Nd 2Fe 14 B phase during crystallization process. The addition of Cu and Zr elements shows to be advantageous to the improvement of an intrinsic coercivity and squareness of hysteresis loop, as well as energy product.
文摘The SC technique is now being applied widely in material preparation, especially in rare earth functional materials in virtue of its advanced process and high performance product. The applications of SC technique in rare earth permanent magnet alloys and hydrogen storage alloys were analyzed integrative, on the basis of summary of SC technique development in this paper. The paper mainly includes development history of SC technology, effect of SC technology on alloy microstructure, application of SC technology in RE storage hydrogen alloy and sintered Nd-Fe-B alloy, development of SC equipment and SC product industry. At the same time, the paper points out the existing problem of SC products.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51731001,11805006,51371009,11504348,and 11675006)National Key Research and Development Program of China(Grant Nos.2016YFB0700901,2017YFA0401502,and 2017YFA0206303)
文摘Mn-based intermetallic compounds have attracted much attention due to their fascinating structural and physical properties,especially their interesting hard magnetic properties.In this paper,we have summarized the magnetic and structural properties of Mn-based intermetallic compounds(Mn X,where X=Al,Bi,and Ga).Various methods for synthesizing single phases of MnAl,MnBi,and Mnx Ga were developed in our lab.A very high saturation magnetization of 125 emu/g,coercivity of 5 kOe,and maximum energy product(BH)_(max)of 3.1 MG·Oe were achieved at room temperature for the pureτ-Mn–Al magnetic phase without carbon doping and the extrusion process.Low temperature phase(LTP)MnBi with a purity above 95 wt.%can be synthesized.An abnormal temperature coefficient of the coercivity was observed for the LTP MnBi magnet.Its coercivity increased with temperature from 100 K to 540 K,reached a maximum of 2.5 T at about540 K,and then decreased slowly to 1.8 T at 610 K.The positive temperature coefficient of the coercivity is related to the evolution of the structure and magnetocrystalline anisotropy field of the LTP MnBi phase with temperature.The LTP MnBi bonded magnets show maximum energy products(BH)_(max)of 8.9 MG·Oe(70 kJ/m^(3))and 5.0 MG·Oe(40 k J/m^(3))at room temperature and 400 K,respectively.Ferrimagnetic Mn_(x)Ga phases with L10 structures(x〈2.0)and D0_(22)structures(x〉2.0)were obtained.All of the above structures can be described by a D0_(22)supercell model in which 2 a-Ga and 2 b-Mn are simultaneously substituted.The tetragonal D0_(22)phases of the Mn_(x)Ga show high coercivities ranging from 7.2 kOe for low Mn content x=1.8 to 18.2 kOe for high Mn content x=3 at room temperature.The Mn_(1.2)Ga sample exhibits a room temperature magnetization value of 80 emu/g.The hard magnetic properties of coercivityiH_(c)=3.5 kOe,remanence M_(r)=43.6 emu/g,and(BH)_(max)=2.5 MG·Oe were obtained at room temperature.Based on the above studies,we believe that Mn-based magnetic materials could be promising candidates for rare earth free permanent magnets exhibiting a high Curie temperature,high magnetocrystalline anisotropy,and very high coercivity.