The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magn...Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.展开更多
Al2O3(f)/TiAl composites were synthesized by an exothermic reaction method using Ti,Al and TiO2 powders doped with Nb2O5 and La2O3. The effect of Nb2O5 and La2O3 additives on the growth and morphology of the fibers, t...Al2O3(f)/TiAl composites were synthesized by an exothermic reaction method using Ti,Al and TiO2 powders doped with Nb2O5 and La2O3. The effect of Nb2O5 and La2O3 additives on the growth and morphology of the fibers, the phases and microstructure of the composites were investigated by means of XRD and SEM. The result indicates that the in situ alumina fiber can be developed in Ti-Al matrix with the Ti/Al mole ratio of 1:2-1:7, and the addition of rare earth powders can improve the dispersion of the fibers in the matrix and increase the length-to-diameter ratio of the fibers.展开更多
The effects of La addition on the microstructure and tensile properties of B-refmed and Sr-modified A1-1 1Si-1.5Cu-0.3Mg cast- ing alloys were investigated. With a trace addition of La (0.05wt%-0. lwt%), the mutual ...The effects of La addition on the microstructure and tensile properties of B-refmed and Sr-modified A1-1 1Si-1.5Cu-0.3Mg cast- ing alloys were investigated. With a trace addition of La (0.05wt%-0. lwt%), the mutual poisoning effect between B and Sr can be neutral- ized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined ct-A1 grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetal- lics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.展开更多
The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With ...The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.展开更多
Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additiv...Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additive was discussed in details. It was speculated that the low coercivity of Ce-Fe-B sintered magnet was related to the irregular sharps and relatively low magneto-anisotropy field of the matrix phase. After introducing a 20 wt.% Nd-based intergranular additive, the coercivity markedly increased from 108 Oe to 2560 Oe due to the formation of thin and continuous grain boundary layers and the surface modification of the matrix phase grains. Additionally, the formation of the high anisotropy field(Nd,Ce)_2Fe_(14)B shell was beneficial to the increase of the coercivity as well. This work suggested that adding low-melting point intergranular additives was effective to fabricate the practical Ce-Fe-B sintered magnets.展开更多
The influence of Nd on the microstructures, tensile properties and fracture behavior of cast Al-18 wt.%Mg2Si/n situ metal matrix composite was investigated. Experimental results showed that, after introducing a proper...The influence of Nd on the microstructures, tensile properties and fracture behavior of cast Al-18 wt.%Mg2Si/n situ metal matrix composite was investigated. Experimental results showed that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt.%Mg2Si composite were well modified. The morphology of primary MgaSi was changed fi'om irregular or dendritic to polyhedral shape, and its average particle size was significantly decreased from 47.5 to 13.0 μm. Moreover, the morphology of the eutectic Mg2Si phase was altered from flake-like to a thin laminar, short fibrous or dot-like structure. Tensile tests revealed that Nd addition improved the tensile strength and ductility of the material. Compared with those of unmodified composite, the ultimate tensile strength and percentage elongation with 0.5% Nd were increased by 32.4% and 200%, respectively. At the same time, Nd addition changed the fracture behavior from brittle to ductile.展开更多
In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)(max)and ...In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)(max)and coercivity H(cj)of Ce-Fe-B sintered magnet are improved from 6.76 to 9.13 MGOe by 35.1%,and from 1.44 to 1.67 kOe by 16.0%,respectively,via adding 5 wt%liquid phase alloy of Ce(35.58)Fe(57.47)Cu6 B(0.95)(at%).Compared with the magnet without Cerich alloy addition,the volume fraction of the grain-boundary phase with low melting point increases in the magnet with Ce-rich alloy additio n,which is be ne ficial to imp roving the microstructure and promoting the coercivity enhancement of the magnet.In the Ce-Fe-B magnet with Ce-rich alloy addition,Cu and Ce enrich in the grain boundaries of the magnet after annealing,therefore the as-annealed magnet has a higher coercivity than the as-sintered magnet.A distinct Fe-rich layer with the average thickness of 60 nm is found in the grain boundaries in the magnet without Ce-rich alloy addition,but it seems that Fe-rich phase disappears in the magnet with Ce-rich alloy addition.The present work suggests that the further improvement of coercivity in the Ce-Fe-B sintered magnets is expectable by designing the composition and structure of added liquid phase alloys.展开更多
The influence of Ce-Co alloy addition and sintering holding time on permanent magnetic properties and micro structure of nanocrystalline Nd-Fe-B bulk alloy were investigated.The coercivity of Nd-Fe-B bulk alloy can be...The influence of Ce-Co alloy addition and sintering holding time on permanent magnetic properties and micro structure of nanocrystalline Nd-Fe-B bulk alloy were investigated.The coercivity of Nd-Fe-B bulk alloy can be enhanced greatly by more than 100% after adding Ce-Co powders.However,when the concentration of Ce-Co is up to 30 wt%,the density of the magnet can reach the maximum value of 7.58 g/cm^(3),but the coercivity does not increase significantly.On the other hand,with the increase of holding time to 10 min,the density and coercivity of magnets increase gradually,reaching up to 7.55 g/cm^(3) and 1134.3 kA/m,respectively.After the addition of Ce-Co alloy,Ce-Co may easily diffuse into the Nd-Fe-B matrix during hot-pressing and under the high pressure and temperature,thus increasing the content of grain boundary phase and the pinning effect of grain boundary,which leads to the increase of coercivity.The extension of the hot-pressing holding time may be more conducive to the diffusion of CeCo into the Nd-Fe-B matrix.In addition,the effect of Ce-Co addition on the magnetic properties of Nd-FeB with different content of rare earth was also studied.The addition of Ce-Co can effectively increase the coercivity of nanocomposite Nd_(2)Fe_(14)B/α-Fe magnets.The addition of Nb to the parent alloy can further improve the coercivity.For Nd_(11)Fe_(81.5)Nb_(1)Ga_(0.5)B_(6) alloy with 10 wt% Ce-Co addition,the coercivity can increase from 740.28 to 1098.48 kA/m.展开更多
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
文摘Microstructure and corrosion resistance of sintered Nd15Dy1.2Fe77Al0.8B6 and Nd22Fe71B7 magnets modified by intergranular addition of MgO and ZnO were investigated. Both the remanence and sintering density of the magnets increased slightly with intergranular additions of MgO and ZnO. There was a remarkable increase in coercivity of Nd22Fe71B7 after addition. Besides, the effects on magnetic properties and an improved corrosion resistance were observed. Compared with the native magnets without addition, corrosion potential of the magnets with MgO and ZnO additives was more positive and the current density in the anodic branch of the polarization curve was reduced. Corrosion resistance resulting from autoclave testing (2×10^5 Pa of steam pressure, 120 ℃) showed that the corrosion rate of NdFeB magnets reduced with the increase of additive amount. Microstructure observation revealed that MgO and ZnO additives were incorporated into the intergranular phases in the magnets. With the introduction of MgO and ZnO, more intergranular phase with high oxygen content was formed while keeping the volume fraction of all the intergranular phases almost unchanged, which may contribute to improved corrosion resistance. Furthermore, addition of MgO and ZnO refined the grain size of Nd22Fe71B7.
基金Projects(50432010 50372037) supported by the National Natural Science Foundation of China
文摘Al2O3(f)/TiAl composites were synthesized by an exothermic reaction method using Ti,Al and TiO2 powders doped with Nb2O5 and La2O3. The effect of Nb2O5 and La2O3 additives on the growth and morphology of the fibers, the phases and microstructure of the composites were investigated by means of XRD and SEM. The result indicates that the in situ alumina fiber can be developed in Ti-Al matrix with the Ti/Al mole ratio of 1:2-1:7, and the addition of rare earth powders can improve the dispersion of the fibers in the matrix and increase the length-to-diameter ratio of the fibers.
基金supported by the Industry, Education, and Research Prospective Project of Jiangsu Province, China (No. BY2012191)the Open Research of Jiangsu Key Laboratory of Advanced Metallic Materials (No. AMM201202)
文摘The effects of La addition on the microstructure and tensile properties of B-refmed and Sr-modified A1-1 1Si-1.5Cu-0.3Mg cast- ing alloys were investigated. With a trace addition of La (0.05wt%-0. lwt%), the mutual poisoning effect between B and Sr can be neutral- ized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined ct-A1 grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetal- lics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.
基金The National Natural Science Foundation of China(No:50371031)
文摘The Cu-10Ag and Cu-10Ag-RE (RE=Ce, Y) alloys in situ filamentary composites were prepared. The relationships of the ultimate tensile strengths (UTS) and microstructure changes of the composites were studied. With increasing of the true strain η, the sizes of the Ag filaments in the composites reduce according to a negative exponential function of η:d=d0·exp(-0.228η), and the UTS of the composites increase also according to a exponential function of η, σ Cu/Ag=σ 0(Cu)+[k Cu/Agd0 -1/2]exp(η/3), here d0 is a coefficient related to the original size of Ag phase. The strain strengthening follows a two-stage strengthening effect. The strengthening mechanisms are related to changes of microstructure in the deformation process. At the low true strain stage, the strengthening is mainly caused by the working hardening controlled by dislocation increasing; at the high true strain stage, the strengthening is mainly caused by the super-fine Ag filaments and the large coherent interfaces between the Ag filaments and Cu matrix. The trace RE additions and the rapid solidification obviously refine scales of the Ag filament of the composites, and therefore obviously increased the strain strengthening rate. The microstructure refinement of the composites, especially the refinement of Ag filament, is the main reason of the high strain strengthening effect in Cu-Ag alloy in situ filamentary composites.
基金Project supported by Plan of National Key Research and Development(2016YFB0700903)Program of Ningbo International Corporation(2015D10019)+1 种基金Program of Ningbo Innovation Team(2012B81001)Zhejiang Provincial Nature Science Foundation for Youth under Grant(LQ15E010004)
文摘Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additive was discussed in details. It was speculated that the low coercivity of Ce-Fe-B sintered magnet was related to the irregular sharps and relatively low magneto-anisotropy field of the matrix phase. After introducing a 20 wt.% Nd-based intergranular additive, the coercivity markedly increased from 108 Oe to 2560 Oe due to the formation of thin and continuous grain boundary layers and the surface modification of the matrix phase grains. Additionally, the formation of the high anisotropy field(Nd,Ce)_2Fe_(14)B shell was beneficial to the increase of the coercivity as well. This work suggested that adding low-melting point intergranular additives was effective to fabricate the practical Ce-Fe-B sintered magnets.
基金Project supported by Key Laboratory Foundation of Liaoning Provincial Committee of Education (2009S053)
文摘The influence of Nd on the microstructures, tensile properties and fracture behavior of cast Al-18 wt.%Mg2Si/n situ metal matrix composite was investigated. Experimental results showed that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt.%Mg2Si composite were well modified. The morphology of primary MgaSi was changed fi'om irregular or dendritic to polyhedral shape, and its average particle size was significantly decreased from 47.5 to 13.0 μm. Moreover, the morphology of the eutectic Mg2Si phase was altered from flake-like to a thin laminar, short fibrous or dot-like structure. Tensile tests revealed that Nd addition improved the tensile strength and ductility of the material. Compared with those of unmodified composite, the ultimate tensile strength and percentage elongation with 0.5% Nd were increased by 32.4% and 200%, respectively. At the same time, Nd addition changed the fracture behavior from brittle to ductile.
基金Project supported by the National Natural Science Foundation of China(51590882)the Plan of National Key Research and Development of China(2016YFB0700903)
文摘In this paper,dependence of magnetic properties on microstructure and composition of Ce-Fe-B sintered magnets with Cu-doped Ce-rich alloy addition was investigated.It shows that the maximum energy product(BH)(max)and coercivity H(cj)of Ce-Fe-B sintered magnet are improved from 6.76 to 9.13 MGOe by 35.1%,and from 1.44 to 1.67 kOe by 16.0%,respectively,via adding 5 wt%liquid phase alloy of Ce(35.58)Fe(57.47)Cu6 B(0.95)(at%).Compared with the magnet without Cerich alloy addition,the volume fraction of the grain-boundary phase with low melting point increases in the magnet with Ce-rich alloy additio n,which is be ne ficial to imp roving the microstructure and promoting the coercivity enhancement of the magnet.In the Ce-Fe-B magnet with Ce-rich alloy addition,Cu and Ce enrich in the grain boundaries of the magnet after annealing,therefore the as-annealed magnet has a higher coercivity than the as-sintered magnet.A distinct Fe-rich layer with the average thickness of 60 nm is found in the grain boundaries in the magnet without Ce-rich alloy addition,but it seems that Fe-rich phase disappears in the magnet with Ce-rich alloy addition.The present work suggests that the further improvement of coercivity in the Ce-Fe-B sintered magnets is expectable by designing the composition and structure of added liquid phase alloys.
基金Project supported by National Key Research and Development Program of China(2018YFC0115202)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M201801501)the Program for Creative Research Groups in University of Chongqing(CXQT19031)。
文摘The influence of Ce-Co alloy addition and sintering holding time on permanent magnetic properties and micro structure of nanocrystalline Nd-Fe-B bulk alloy were investigated.The coercivity of Nd-Fe-B bulk alloy can be enhanced greatly by more than 100% after adding Ce-Co powders.However,when the concentration of Ce-Co is up to 30 wt%,the density of the magnet can reach the maximum value of 7.58 g/cm^(3),but the coercivity does not increase significantly.On the other hand,with the increase of holding time to 10 min,the density and coercivity of magnets increase gradually,reaching up to 7.55 g/cm^(3) and 1134.3 kA/m,respectively.After the addition of Ce-Co alloy,Ce-Co may easily diffuse into the Nd-Fe-B matrix during hot-pressing and under the high pressure and temperature,thus increasing the content of grain boundary phase and the pinning effect of grain boundary,which leads to the increase of coercivity.The extension of the hot-pressing holding time may be more conducive to the diffusion of CeCo into the Nd-Fe-B matrix.In addition,the effect of Ce-Co addition on the magnetic properties of Nd-FeB with different content of rare earth was also studied.The addition of Ce-Co can effectively increase the coercivity of nanocomposite Nd_(2)Fe_(14)B/α-Fe magnets.The addition of Nb to the parent alloy can further improve the coercivity.For Nd_(11)Fe_(81.5)Nb_(1)Ga_(0.5)B_(6) alloy with 10 wt% Ce-Co addition,the coercivity can increase from 740.28 to 1098.48 kA/m.