The effects of Ce, Y and Gd additions on the as-cast microstructure and mechanical properties of Mg-3Sn-2Sr alloy were investigated and compared by scanning electron microscopy, X-ray diffraction, differential scannin...The effects of Ce, Y and Gd additions on the as-cast microstructure and mechanical properties of Mg-3Sn-2Sr alloy were investigated and compared by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry analysis, tensile and creep tests. The results indicate that the Mg-3Sn-2Sr ternary alloy is mainly composed ofα-Mg, primary and eutectic SrMgSn, and Mg2Sn phases. After the additions of 1.0%Ce, 1.0%Y and 1.0%Gd to the Mg-3Sn-2Sr alloy, the Mg12Ce, YMgSn, GdMgSn and/or Mg17Sr2 phases are formed, respectively. At the same time, the formation of the primary SrMgSn phase is suppressed and the coarse needle-like primary SrMgSn phase is modified and refined. In addition, the additions of 1.0% Ce, 1.0% Y and 1.0% Gd to the Mg-3Sn-2Sr alloy can simultaneously improve the tensile and creep properties of the alloy. Among the Ce-, Y-and Gd-containing alloys, the tensile properties of the Ce-containing alloy are relatively higher than those of the Y-and Gd-containing alloys.展开更多
The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear t...The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed.展开更多
With the aim to further improve the mechanical properties of Mg-A1-RE-based alloy, Mg-3.0Al-1.8Ce-0.3Y-0.2Mn alloy was prepared by high-pressure die-casting technique. The microstructure, thermal stability of intermet...With the aim to further improve the mechanical properties of Mg-A1-RE-based alloy, Mg-3.0Al-1.8Ce-0.3Y-0.2Mn alloy was prepared by high-pressure die-casting technique. The microstructure, thermal stability of intermetallic phases and mechanical properties were investigated. The results show that the alloy is composed of fine primary a-Mg dendrites and eutectic in the interdendritic regions. The intermetallic phases in eutectic are Aln(Ce,Y)3 and A12(Ce,Y) with the former being the dominant one. The thermal stability of Al11(ce,Y)3 is conditioned. It is basically stable at temperature up to 200℃ within 800 h, while most of the Al11(Ce,Y)3 intermetallics transform to A12(Ce,Y) at higher temperature of 450 ℃ for 800 h. The alloy exhibits remarkably improved strength both at room temperature and 200℃, which is mainly attributed to the reinforcement of dendrite boundaries with Alll(Ce,Y)3 intermetallics, small dendritic arm spacing effect as well as the solid solution strengthening with Y element.展开更多
Compression tests were performed on the Mg−6Zn−0.5Ce(wt.%)alloy using a Gleeble−1500 thermomechanical simulator testing system at temperatures of 250,300,350℃ and strain rates of 0.001,0.01,0.1 s^−1.The microstructur...Compression tests were performed on the Mg−6Zn−0.5Ce(wt.%)alloy using a Gleeble−1500 thermomechanical simulator testing system at temperatures of 250,300,350℃ and strain rates of 0.001,0.01,0.1 s^−1.The microstructure and texture evolution of the Mg−6Zn−0.5Ce alloy during hot compression were investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).The results showed that Zener−Hollomon parameters obtained from the deformation processes had a significant effect on the dynamic recrystallization and texture of the Mg−6Zn−0.5Ce alloy.The fraction of undynamically recrystallized(unDRXed)regions increased,and the dynamically recrystallized(DRXed)grain size decreased with increasing the Zener−Hollomon parameters.The texture intensity of the DRXed regions was weaker compared with that in the unDRXed regions,which resulted in a sharper texture intensity in the samples deformed with higher Zener−Hollomon parameters.The increase in recrystallized texture intensity was related to preferred grain growth.展开更多
Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg1...Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg12Ce) phase can apparently elevate recrystallization temperature by preventing the grain boundary migration. No dynamic recrystallization occurs during the hot-extrusion. The mechanical properties of as extruded specimens are (σb=278.5 MPa,) δ=12.0%, while those of the specimens annealed at 250 ℃ for 100 h are σb=(272.6 MPa,) δ=(11.3%,) which indicate that the alloy has good mechanical properties at room temperature.展开更多
The as-cast microstructures and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys were investigated and compared. The results indicate that the Sc-containing alloy mainly consists of α...The as-cast microstructures and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys were investigated and compared. The results indicate that the Sc-containing alloy mainly consists of α-Mg, Mg12Ce and Mn2Sc phases, and the Zn-containing alloy is mainly composed of α-Mg and Mg12Ce phases. The morphologies of the Mg12Ce phases in the two as-cast alloys are different. The Mg12Ce phases in the Sc- and Zn-containing alloys mainly exhibit particle-like shapes and continuous and/or quasti-continuous nets, respectively. Furthermore, the grains of the Sc-containing alloy are finer than those of the Zn-containing alloy. In addition, the Sc- and Zn-containing alloys have similar as-cast tensile properties at room temperature and 300 °C. However, the Sc-containing alloy exhibits higher creep-resistant properties at 300 °C and 30 MPa for 100 h than the Zn-containing alloy.展开更多
基金Project(CSTC2013jcyjC60001)supported by the Chongqing Science and Technology Commission of ChinaProject(KJ120834)supported by the Chongqing Education Commission of ChinaProject(CQUT1205)supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts,Ministry of Education,Chongqing University of Technology,China
文摘The effects of Ce, Y and Gd additions on the as-cast microstructure and mechanical properties of Mg-3Sn-2Sr alloy were investigated and compared by scanning electron microscopy, X-ray diffraction, differential scanning calorimetry analysis, tensile and creep tests. The results indicate that the Mg-3Sn-2Sr ternary alloy is mainly composed ofα-Mg, primary and eutectic SrMgSn, and Mg2Sn phases. After the additions of 1.0%Ce, 1.0%Y and 1.0%Gd to the Mg-3Sn-2Sr alloy, the Mg12Ce, YMgSn, GdMgSn and/or Mg17Sr2 phases are formed, respectively. At the same time, the formation of the primary SrMgSn phase is suppressed and the coarse needle-like primary SrMgSn phase is modified and refined. In addition, the additions of 1.0% Ce, 1.0% Y and 1.0% Gd to the Mg-3Sn-2Sr alloy can simultaneously improve the tensile and creep properties of the alloy. Among the Ce-, Y-and Gd-containing alloys, the tensile properties of the Ce-containing alloy are relatively higher than those of the Y-and Gd-containing alloys.
基金Project(N110323017) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E2010001390) supported by the Natural Science Foundation of Hebei Province,China
文摘The crystal structures,compositions and phase relations of the intermetallics of Mg-Zn-Ce system in the Mg-rich corner at 400 ℃ were identified through equilibrium alloy method.For Mg-Zn-Ce system,there is a linear ternary compound(T phase),whose chemical formula is(Mg1-xZnx)11Ce.The range of Zn content in T phase is from 9.6% to 43.6%(molar fraction).The crystal structure of T phase is C-centered orthorhombic lattice with lattice parameters of a=0.96-1.029 nm,b=1.115-1.204 nm,c=0.940-1.015 nm.And the lattice parameters of T phase are decreasing a little with increasing Zn content.According to the results of composition and crystal structure,the maximal solubility of Zn in Mg12Ce is about 7.8%(molar fraction),and the chemical formula of the solid solution can be identified as(Mg1-xZnx)12Ce.The isothermal section of Mg-Zn-Ce system in Mg-rich corner at 400 ℃ was constructed.
基金Project (HEUCFR1128) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2010AA4BE031)supported by the Key Project of Science and Technology of Harbin City,China+1 种基金Projects (20100471015,20100471046) supported by the China Postdoctoral Science FoundationProject (LBH-Z09217) supported by the Heilongjiang Postdoctorial Fund,China
文摘With the aim to further improve the mechanical properties of Mg-A1-RE-based alloy, Mg-3.0Al-1.8Ce-0.3Y-0.2Mn alloy was prepared by high-pressure die-casting technique. The microstructure, thermal stability of intermetallic phases and mechanical properties were investigated. The results show that the alloy is composed of fine primary a-Mg dendrites and eutectic in the interdendritic regions. The intermetallic phases in eutectic are Aln(Ce,Y)3 and A12(Ce,Y) with the former being the dominant one. The thermal stability of Al11(ce,Y)3 is conditioned. It is basically stable at temperature up to 200℃ within 800 h, while most of the Al11(Ce,Y)3 intermetallics transform to A12(Ce,Y) at higher temperature of 450 ℃ for 800 h. The alloy exhibits remarkably improved strength both at room temperature and 200℃, which is mainly attributed to the reinforcement of dendrite boundaries with Alll(Ce,Y)3 intermetallics, small dendritic arm spacing effect as well as the solid solution strengthening with Y element.
基金Project(51801150)supported by the National Natural Science Foundation of ChinaProject(2019JQ-512)supported by the Shaanxi Natural Science Basic Research Program,ChinaProject(16JK1557)supported by the Shaanxi Provincial Department of Education Fund,China。
文摘Compression tests were performed on the Mg−6Zn−0.5Ce(wt.%)alloy using a Gleeble−1500 thermomechanical simulator testing system at temperatures of 250,300,350℃ and strain rates of 0.001,0.01,0.1 s^−1.The microstructure and texture evolution of the Mg−6Zn−0.5Ce alloy during hot compression were investigated by optical microscopy(OM)and electron backscattered diffraction(EBSD).The results showed that Zener−Hollomon parameters obtained from the deformation processes had a significant effect on the dynamic recrystallization and texture of the Mg−6Zn−0.5Ce alloy.The fraction of undynamically recrystallized(unDRXed)regions increased,and the dynamically recrystallized(DRXed)grain size decreased with increasing the Zener−Hollomon parameters.The texture intensity of the DRXed regions was weaker compared with that in the unDRXed regions,which resulted in a sharper texture intensity in the samples deformed with higher Zener−Hollomon parameters.The increase in recrystallized texture intensity was related to preferred grain growth.
文摘Microstructures and mechanical properties of (Mg-2.0%Ce-0.7%Zn-0.7%Zr) alloy were studied. The results of scanning electron microscopy show that Mg12Ce phase mainly distributes at the grain boundaries. The fine (Mg12Ce) phase can apparently elevate recrystallization temperature by preventing the grain boundary migration. No dynamic recrystallization occurs during the hot-extrusion. The mechanical properties of as extruded specimens are (σb=278.5 MPa,) δ=12.0%, while those of the specimens annealed at 250 ℃ for 100 h are σb=(272.6 MPa,) δ=(11.3%,) which indicate that the alloy has good mechanical properties at room temperature.
基金Project (50725413) supported by the National Natural Science Foundation of ChinaProject (2007CB613704) supported by the National Basic Research Program of China+1 种基金Projects (2010AC4085, 2009AB4134) supported by the Chongqing Science and Technology Commission of ChinaProject (2010CSTC-HDLS) supported by the Program for Hundreds of Distinguished Leading Scientists of CQ CSTC, China
文摘The as-cast microstructures and mechanical properties of Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys were investigated and compared. The results indicate that the Sc-containing alloy mainly consists of α-Mg, Mg12Ce and Mn2Sc phases, and the Zn-containing alloy is mainly composed of α-Mg and Mg12Ce phases. The morphologies of the Mg12Ce phases in the two as-cast alloys are different. The Mg12Ce phases in the Sc- and Zn-containing alloys mainly exhibit particle-like shapes and continuous and/or quasti-continuous nets, respectively. Furthermore, the grains of the Sc-containing alloy are finer than those of the Zn-containing alloy. In addition, the Sc- and Zn-containing alloys have similar as-cast tensile properties at room temperature and 300 °C. However, the Sc-containing alloy exhibits higher creep-resistant properties at 300 °C and 30 MPa for 100 h than the Zn-containing alloy.