High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was...High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium.展开更多
Ce_(x)Co_(y)Cuzoxide composite catalysts were prepared by using polyethylene glycol, citrate sol-gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the Xray diffr...Ce_(x)Co_(y)Cuzoxide composite catalysts were prepared by using polyethylene glycol, citrate sol-gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the Xray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FT-IR), etc. The catalytic activity for o-xylene was investigated. The catalytic degradation pathway and mechanism of o-xylene were inferred. The results show that Ce O_(2)is mainly present on the surface of all catalysts. The surface area of Ce_(2)Co1Cu1is up to 77.2 m^(2)/g, and the average pore size is 10.62 nm. It exhibits redox and sufficient Ce^(4+)and Ce^(^(3+)), and reactive oxygen species, and has maximum O-H and C=O in the five catalyst samples. The catalytic activity of Ce2Co1Cu1is the best at low temperature, with the T50and T90values of 235 and 258°C at a space velocity of 32000 h-1, respectively. The o-xylene is oxidized to o-methyl benzaldehyde, and then further oxidized to o-methylbenzoic acid, and finally CO_(2)and H2O are formed.展开更多
Simultaneous catalytic removal of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and nitrogen oxides(NO_(x))emission at low temperature is of great significance to solve the multiple air pollution problem...Simultaneous catalytic removal of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and nitrogen oxides(NO_(x))emission at low temperature is of great significance to solve the multiple air pollution problem caused during waste incineration.A novel catalyst with excellent low-temperature activity towards PCDD/Fs catalytic decomposition,as well as selective catalytic reduction(SCR)of NO with NH_(3)is urgently needed to simultaneously control PCDD/Fs and NO emis-sions.Manganese-cerium composite oxides supported on titanium dioxide(MnO_(x)-CeO_(2)/TiO_(2))or TiO_(2)and carbon nano-tubes(CNTs)composite carrier(MnO_(x)-CeO_(2)/TiO_(2)-CNTs)were prepared using sol-gel method,and their catalytic activity towards simultaneous abatement of ortho-dichlorobenzene(o-DCBz,model molecular to simulate PCDD/Fs)and NO was investigated.In comparison with their removal,the simultaneous removal efficiencies of o-DCBz and NO over MnO_(x)-CeO_(2)/TiO_(2)catalyst are lowered to 27.9%and 51.3%at 150℃under the gas hourly space velocity(GHSV)of 15,000 h−1,due to the competition between the reactants for the limited surface acid sites and surface reactive oxygen species.CNTs addition improves the catalytic activity for their simultaneous removal.The optimum condition occurs on MnO_(x)-CeO_(2)/TiO_(2)combined with 20 wt.%CNTs that above 70%of o-DCBz and NO are removed simultaneously.Characterization results reveal that MnO_(x)-CeO_(2)/TiO_(2)-CNTs catalyst with proper CNTs content has larger Brunauer-Emmet-Teller surface area and greatly improved surface acidity property,which are beneficial to both o-DCBz and NO adsorption.Moreover,the relatively higher surface atomic concentration of Mn^(4+)as well as the existence of abundant surface Ce^(3+)atom accelerates the redox cycle of the catalyst and enriches the surface reactive oxygen species.All the above factors alleviate the competition effect between o-DCBz catalytic oxidation and NH_(3)-SCR reaction and are conducive to the simultaneous abatement of o-DCBz and NO.However,excess CNTs make less contribution on enhancing the interaction between Mn atom and Ce atom,thereby result-ing in less improvement in the catalytic activity.展开更多
基金supported by the National Natural Science Foundation of China (No.21776156).
文摘High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium.
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (LY20E080003)。
文摘Ce_(x)Co_(y)Cuzoxide composite catalysts were prepared by using polyethylene glycol, citrate sol-gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the Xray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FT-IR), etc. The catalytic activity for o-xylene was investigated. The catalytic degradation pathway and mechanism of o-xylene were inferred. The results show that Ce O_(2)is mainly present on the surface of all catalysts. The surface area of Ce_(2)Co1Cu1is up to 77.2 m^(2)/g, and the average pore size is 10.62 nm. It exhibits redox and sufficient Ce^(4+)and Ce^(^(3+)), and reactive oxygen species, and has maximum O-H and C=O in the five catalyst samples. The catalytic activity of Ce2Co1Cu1is the best at low temperature, with the T50and T90values of 235 and 258°C at a space velocity of 32000 h-1, respectively. The o-xylene is oxidized to o-methyl benzaldehyde, and then further oxidized to o-methylbenzoic acid, and finally CO_(2)and H2O are formed.
基金This research is supported by National Natural Science Foundation of China(52006144)Natural Science Foundation of Shanghai(17ZR1419400).
文摘Simultaneous catalytic removal of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)and nitrogen oxides(NO_(x))emission at low temperature is of great significance to solve the multiple air pollution problem caused during waste incineration.A novel catalyst with excellent low-temperature activity towards PCDD/Fs catalytic decomposition,as well as selective catalytic reduction(SCR)of NO with NH_(3)is urgently needed to simultaneously control PCDD/Fs and NO emis-sions.Manganese-cerium composite oxides supported on titanium dioxide(MnO_(x)-CeO_(2)/TiO_(2))or TiO_(2)and carbon nano-tubes(CNTs)composite carrier(MnO_(x)-CeO_(2)/TiO_(2)-CNTs)were prepared using sol-gel method,and their catalytic activity towards simultaneous abatement of ortho-dichlorobenzene(o-DCBz,model molecular to simulate PCDD/Fs)and NO was investigated.In comparison with their removal,the simultaneous removal efficiencies of o-DCBz and NO over MnO_(x)-CeO_(2)/TiO_(2)catalyst are lowered to 27.9%and 51.3%at 150℃under the gas hourly space velocity(GHSV)of 15,000 h−1,due to the competition between the reactants for the limited surface acid sites and surface reactive oxygen species.CNTs addition improves the catalytic activity for their simultaneous removal.The optimum condition occurs on MnO_(x)-CeO_(2)/TiO_(2)combined with 20 wt.%CNTs that above 70%of o-DCBz and NO are removed simultaneously.Characterization results reveal that MnO_(x)-CeO_(2)/TiO_(2)-CNTs catalyst with proper CNTs content has larger Brunauer-Emmet-Teller surface area and greatly improved surface acidity property,which are beneficial to both o-DCBz and NO adsorption.Moreover,the relatively higher surface atomic concentration of Mn^(4+)as well as the existence of abundant surface Ce^(3+)atom accelerates the redox cycle of the catalyst and enriches the surface reactive oxygen species.All the above factors alleviate the competition effect between o-DCBz catalytic oxidation and NH_(3)-SCR reaction and are conducive to the simultaneous abatement of o-DCBz and NO.However,excess CNTs make less contribution on enhancing the interaction between Mn atom and Ce atom,thereby result-ing in less improvement in the catalytic activity.