Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the...Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.展开更多
The energy transfer phenomenon of Ce→Gd→Tb via Gd sublattice and its depandence has been investigated in GdxY-1-xP5O14:Ce,Tb.The fluorescent and excitation spectra of Gdp5O14,Gdp5O14:Ce,Gdp5O14:Tb and GdxY-1xP5O14:C...The energy transfer phenomenon of Ce→Gd→Tb via Gd sublattice and its depandence has been investigated in GdxY-1-xP5O14:Ce,Tb.The fluorescent and excitation spectra of Gdp5O14,Gdp5O14:Ce,Gdp5O14:Tb and GdxY-1xP5O14:Ce,Tb and absorption spectrum of Gdp5O14 have been studied.The results show that as x is larger than 0.7.the energy transfer from Ce3+ via Gd3+to Tb3+ is obvious.The main reason for the energy transfer of Ce→Gd→Tb being efficient in the region x>0.7 is that the spectral overlap between Ce3+ emission spectrum and Gd3+ absorption spectrum increases and the structure changes from monoclinic Ⅱ(C2/c) layer structure(x<0.7) to monoclinic I(P21/c) ribbon structure.展开更多
Preparation, structure and spectral properties of rare earth pentaphosphates Gd_xY_(1-x)P_5O_(14): Ce, Tb have been investigated. When x>0. 7, the pentaphosphates belong to monoclinic crystal system Ⅰ with space g...Preparation, structure and spectral properties of rare earth pentaphosphates Gd_xY_(1-x)P_5O_(14): Ce, Tb have been investigated. When x>0. 7, the pentaphosphates belong to monoclinic crystal system Ⅰ with space group P2_1/c (C). When x≤0. 7. they belong to monoclinic crystal system Ⅱ with C2/c (C). The fluorescent and excitation spectra of Gdp_5O_(14), GdP_5O_(14): Ce. GdP_5O_(14) : Tb and Gd_xY_(1-x)P_5O_(14) : Ce, Tb have been studied and the energy transfer phenomenon from Ce(3+)→Gd(3+)→Tb(3+) by the medium of Gd(3+) sublattice has been determined.展开更多
In this work, the addition of praseodymium(Pr) into ceria as a mixed oxide support in a form of Ce(1-x)PrxO2(x = 0.01,0.025, 0.050, 0.075 and 0.10) was prepared using a co-precipitation method. The structural an...In this work, the addition of praseodymium(Pr) into ceria as a mixed oxide support in a form of Ce(1-x)PrxO2(x = 0.01,0.025, 0.050, 0.075 and 0.10) was prepared using a co-precipitation method. The structural and textural properties of the synthesized supports were characterized by X-ray diffraction(XRD), N2 adsorption-desorption, Raman spectroscopy, H2-temperature programmed reduction(H2-TPR) and H2-chemisorption. Upon addition of Pr, XRD patterns and Raman spectra indicated an enlargement of ceria unit cell and the characteristics Raman broad peak at 570 cm^(-1) which was attributed to the existence of oxygen vacancies in the ceria lattice. This indicated that some Ce^(4+) ions in ceria were replaced by larger Pr^(3+) cations. To evidence the incorporation of Pr^(3+) cations into ceria lattice,X-ray absorption near edge structure(XANES) was employed. The results showed that the oxidation states of Ce in mixed oxide supports were slightly lower than 4+ while those of Pr were still the same as a precursor salt. Therefore, the incorporation of Pr^(3+) into ceria lattice would lead to strain and unbalanced charge and result in oxygen vacancies. The reducibility of Ce(1-x)PrxO2 mixed oxide supports was investigated by H2-TPR and temperature-resolved X-ray absorption spectroscopy experiment under reduction conditions. XANES spectra of Ce L3 edges showed a lower surface reduction temperature(Ce^(4+)to Ce^(3+)) of Ce(0.925)Pr(0.075)O2 than that of CeO2 which agreed with H2-TPR results. H2-chemisorption indicated that Pr promoted the dispersion of the metal catalyst on the mixed oxide support and increased the adsorption site for CO. For WGS reaction, 1% Pd/mixed oxide support had higher WGS activity than 1%Pd/ceria. The increase of WGS activity was due to the increase of Pd dispersion on the support and the existence of oxygen vacancies produced from incorporation of Pr into the ceria lattice.展开更多
A systematical exploration of energy transfer processes in Lu2(1-x)Y2xSiO5:Ce(LYSO) crystals under vacuum ultraviolet-ultraviolet(VUV-UV) excitation was implemented. The relationship between energy transfer and...A systematical exploration of energy transfer processes in Lu2(1-x)Y2xSiO5:Ce(LYSO) crystals under vacuum ultraviolet-ultraviolet(VUV-UV) excitation was implemented. The relationship between energy transfer and scintillation properties was established. It is revealed that there are mainly three energy transfer types in the crystal i.e. host → Ce1/Ce2/STEs, Ce1 →Ce2 and STEs → Ce1/Ce2. The influence of Y content of the LYSO crystals on the energy transfer efficiency of the above processes was carefully analyzed. Besides, we find a special component of the crystal i.e. Y content = 45 at% at which the energy resolution and light output of the crystal perform the worst.展开更多
Fe^3+and Zn^2+ions were doped into the lattice of CeO2 via the hydrothermal method.The micro structure and spectra features were analyzed systemically.XRD results show that the solid solubility of Fe^3+and Zn^2+ions i...Fe^3+and Zn^2+ions were doped into the lattice of CeO2 via the hydrothermal method.The micro structure and spectra features were analyzed systemically.XRD results show that the solid solubility of Fe^3+and Zn^2+ions in Ce1-x(Fe0.5Zn0.5)xO2 can be identified as x=0.16.The cell volumes are decreased by increasing the doped content.The TEM graphs prove that the grain size of the sample is about 10 nm,and the EDS result indicates that the doped contents are in accordance with that of the theory concentrations.Meanwhile,the doping also causes the increasing concentrations of the defects and oxygen vacancies which are supported by the XPS,Raman,UV and PL characterizations.The samples exhibit better catalytic activities for improving the hydrogen storage properties and the electrochemical kinetics of the ball milled Mg2Ni based composites.Further,the catalysis effects are improved by increasing the doped contents,which can be ascribed to the increasing contents of the oxygen vacancies,defects,the special electron transition states and the nature of the doped ions in CeO2-based solid solutions.展开更多
基金supported by the National Natural Science Foundations of China(51501095,51371094)the Natural Science Foundation of Inner Mongolia(2017MS(LH)0516)
文摘Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.
文摘The energy transfer phenomenon of Ce→Gd→Tb via Gd sublattice and its depandence has been investigated in GdxY-1-xP5O14:Ce,Tb.The fluorescent and excitation spectra of Gdp5O14,Gdp5O14:Ce,Gdp5O14:Tb and GdxY-1xP5O14:Ce,Tb and absorption spectrum of Gdp5O14 have been studied.The results show that as x is larger than 0.7.the energy transfer from Ce3+ via Gd3+to Tb3+ is obvious.The main reason for the energy transfer of Ce→Gd→Tb being efficient in the region x>0.7 is that the spectral overlap between Ce3+ emission spectrum and Gd3+ absorption spectrum increases and the structure changes from monoclinic Ⅱ(C2/c) layer structure(x<0.7) to monoclinic I(P21/c) ribbon structure.
文摘Preparation, structure and spectral properties of rare earth pentaphosphates Gd_xY_(1-x)P_5O_(14): Ce, Tb have been investigated. When x>0. 7, the pentaphosphates belong to monoclinic crystal system Ⅰ with space group P2_1/c (C). When x≤0. 7. they belong to monoclinic crystal system Ⅱ with C2/c (C). The fluorescent and excitation spectra of Gdp_5O_(14), GdP_5O_(14): Ce. GdP_5O_(14) : Tb and Gd_xY_(1-x)P_5O_(14) : Ce, Tb have been studied and the energy transfer phenomenon from Ce(3+)→Gd(3+)→Tb(3+) by the medium of Gd(3+) sublattice has been determined.
基金Project supported by Center of Excellence for Innovation in Chemistry(PERCH-CIC)Commission on Higher Education,Ministry of Education and the Center of Alternative Energy Research and Development,Khon Kaen University
文摘In this work, the addition of praseodymium(Pr) into ceria as a mixed oxide support in a form of Ce(1-x)PrxO2(x = 0.01,0.025, 0.050, 0.075 and 0.10) was prepared using a co-precipitation method. The structural and textural properties of the synthesized supports were characterized by X-ray diffraction(XRD), N2 adsorption-desorption, Raman spectroscopy, H2-temperature programmed reduction(H2-TPR) and H2-chemisorption. Upon addition of Pr, XRD patterns and Raman spectra indicated an enlargement of ceria unit cell and the characteristics Raman broad peak at 570 cm^(-1) which was attributed to the existence of oxygen vacancies in the ceria lattice. This indicated that some Ce^(4+) ions in ceria were replaced by larger Pr^(3+) cations. To evidence the incorporation of Pr^(3+) cations into ceria lattice,X-ray absorption near edge structure(XANES) was employed. The results showed that the oxidation states of Ce in mixed oxide supports were slightly lower than 4+ while those of Pr were still the same as a precursor salt. Therefore, the incorporation of Pr^(3+) into ceria lattice would lead to strain and unbalanced charge and result in oxygen vacancies. The reducibility of Ce(1-x)PrxO2 mixed oxide supports was investigated by H2-TPR and temperature-resolved X-ray absorption spectroscopy experiment under reduction conditions. XANES spectra of Ce L3 edges showed a lower surface reduction temperature(Ce^(4+)to Ce^(3+)) of Ce(0.925)Pr(0.075)O2 than that of CeO2 which agreed with H2-TPR results. H2-chemisorption indicated that Pr promoted the dispersion of the metal catalyst on the mixed oxide support and increased the adsorption site for CO. For WGS reaction, 1% Pd/mixed oxide support had higher WGS activity than 1%Pd/ceria. The increase of WGS activity was due to the increase of Pd dispersion on the support and the existence of oxygen vacancies produced from incorporation of Pr into the ceria lattice.
基金supported by National Natural Science Foundation of China(11475241)Science and Technology Commission of Shanghai Municipality(15DZ2251200)
文摘A systematical exploration of energy transfer processes in Lu2(1-x)Y2xSiO5:Ce(LYSO) crystals under vacuum ultraviolet-ultraviolet(VUV-UV) excitation was implemented. The relationship between energy transfer and scintillation properties was established. It is revealed that there are mainly three energy transfer types in the crystal i.e. host → Ce1/Ce2/STEs, Ce1 →Ce2 and STEs → Ce1/Ce2. The influence of Y content of the LYSO crystals on the energy transfer efficiency of the above processes was carefully analyzed. Besides, we find a special component of the crystal i.e. Y content = 45 at% at which the energy resolution and light output of the crystal perform the worst.
基金supported by the National Natural Science Foundation of China(51962028,51501095)the Natural Science Foundation of Inner Mongolia(2017MS(LH)0516,2018MS05040,2018BS05010,2017MS(LH)0519)the Innovation Fund of Inner Mongolia University of Science and Technology(2018YQL02).
文摘Fe^3+and Zn^2+ions were doped into the lattice of CeO2 via the hydrothermal method.The micro structure and spectra features were analyzed systemically.XRD results show that the solid solubility of Fe^3+and Zn^2+ions in Ce1-x(Fe0.5Zn0.5)xO2 can be identified as x=0.16.The cell volumes are decreased by increasing the doped content.The TEM graphs prove that the grain size of the sample is about 10 nm,and the EDS result indicates that the doped contents are in accordance with that of the theory concentrations.Meanwhile,the doping also causes the increasing concentrations of the defects and oxygen vacancies which are supported by the XPS,Raman,UV and PL characterizations.The samples exhibit better catalytic activities for improving the hydrogen storage properties and the electrochemical kinetics of the ball milled Mg2Ni based composites.Further,the catalysis effects are improved by increasing the doped contents,which can be ascribed to the increasing contents of the oxygen vacancies,defects,the special electron transition states and the nature of the doped ions in CeO2-based solid solutions.