In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) st...In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR.展开更多
Zn2Si O4︰Tb^3+, Zn2 Si O4︰Ce^3+, Zn2 Si O4︰Tb^3+, Ce^3+ phosphors were prepared by solidstate reaction at 1 150 ℃ for 2h under a weak reducing atmosphere. Moreover, the XRD patterns and photoluminescence spect...Zn2Si O4︰Tb^3+, Zn2 Si O4︰Ce^3+, Zn2 Si O4︰Tb^3+, Ce^3+ phosphors were prepared by solidstate reaction at 1 150 ℃ for 2h under a weak reducing atmosphere. Moreover, the XRD patterns and photoluminescence spectra were recorded and the effects of Tb3+ and Ce3+ concentration on the luminescent properties of as-synthesized phosphors were investigated. The emission spectra under ultraviolet light(333 nm) radiation showed a dominant peak at 542 nm attributed to the 5D4→7F5 transition of Tb^3+, which was enhanced significantly(about 45 times) by the co-doping of Ce^3+, indicating that there occurred an efficient energy transfer from Ce^3+ to Tb^3+. According to the Dexter's energy transfer formula of multipolar interaction, it was demonstrated that the energy transfer between Ce3+ and Tb3+ was due to the electric dipolar-dipolar interaction of the resonance transfer.展开更多
Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion...Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion emission from ^3F4 to the ^3H6 level. Consequently, the 1.47μm emission occurs after the population inversion between the ^3H4 and ^3F4 levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55μm emission band of Er^3+ with 1.47μm emission band of Tm^3+ under 800hm excitation.展开更多
Glasses are prepared by sintering P2O5, ZnO and Ce2(C2O4)3 10H2O mixtures at 1 100 ℃ in air and then annealed at 400 ℃ for 10 hours. The obtained glasses are homogeneous, transparent and colorless. Emission and ex...Glasses are prepared by sintering P2O5, ZnO and Ce2(C2O4)3 10H2O mixtures at 1 100 ℃ in air and then annealed at 400 ℃ for 10 hours. The obtained glasses are homogeneous, transparent and colorless. Emission and excitation spectra are measured for the samples and the results show that the glasses contain Ce3+ trivalent cerium ions. The parameters of glass preparation obtained here may be adapted to preparing this type of glasses doped with other lanthanide ions, so as to study energy transfer phenomena and variation of radiative lifetime with refractive index due to local field effect.展开更多
基金the National Natural Science Foundation of China (51676090)the Natural Science Foundation of Jiangsu Province (BK20150513), and the Six Talent Peaks Project in Jiangsu Province.
文摘In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR.
基金Funded by the National Natural Science Foundation of China(No.21171152)the Natural Science Foundation of Hubei Province of China(No.2013CFB036)the Science and Technology Project of Hubei Provincial Department of Education(No.B20083202)
文摘Zn2Si O4︰Tb^3+, Zn2 Si O4︰Ce^3+, Zn2 Si O4︰Tb^3+, Ce^3+ phosphors were prepared by solidstate reaction at 1 150 ℃ for 2h under a weak reducing atmosphere. Moreover, the XRD patterns and photoluminescence spectra were recorded and the effects of Tb3+ and Ce3+ concentration on the luminescent properties of as-synthesized phosphors were investigated. The emission spectra under ultraviolet light(333 nm) radiation showed a dominant peak at 542 nm attributed to the 5D4→7F5 transition of Tb^3+, which was enhanced significantly(about 45 times) by the co-doping of Ce^3+, indicating that there occurred an efficient energy transfer from Ce^3+ to Tb^3+. According to the Dexter's energy transfer formula of multipolar interaction, it was demonstrated that the energy transfer between Ce3+ and Tb3+ was due to the electric dipolar-dipolar interaction of the resonance transfer.
基金Supported by the Natural Science Foundation of Zhejiang Province under Grant No Y104498, the Science and Technology Department of Zhejiang Province under Grant Nos 2005C31014 and 2006C21082.
文摘Fluorescence of Tm^3+/Er^3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce^3+ are investigated, It shows that Ce^3+ codoping with Tm^3+/Er^3+ in BS glasses results in a quenching of Tm^3+ ion emission from ^3F4 to the ^3H6 level. Consequently, the 1.47μm emission occurs after the population inversion between the ^3H4 and ^3F4 levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55μm emission band of Er^3+ with 1.47μm emission band of Tm^3+ under 800hm excitation.
基金Funded by National Natural Science Foundation of China(Nos.10874253 and 11111120060)Education Committe of Chongqing(No. KJ090520)
文摘Glasses are prepared by sintering P2O5, ZnO and Ce2(C2O4)3 10H2O mixtures at 1 100 ℃ in air and then annealed at 400 ℃ for 10 hours. The obtained glasses are homogeneous, transparent and colorless. Emission and excitation spectra are measured for the samples and the results show that the glasses contain Ce3+ trivalent cerium ions. The parameters of glass preparation obtained here may be adapted to preparing this type of glasses doped with other lanthanide ions, so as to study energy transfer phenomena and variation of radiative lifetime with refractive index due to local field effect.