High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was...High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium.展开更多
Ce_(x)Co_(y)Cuzoxide composite catalysts were prepared by using polyethylene glycol, citrate sol-gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the Xray diffr...Ce_(x)Co_(y)Cuzoxide composite catalysts were prepared by using polyethylene glycol, citrate sol-gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the Xray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FT-IR), etc. The catalytic activity for o-xylene was investigated. The catalytic degradation pathway and mechanism of o-xylene were inferred. The results show that Ce O_(2)is mainly present on the surface of all catalysts. The surface area of Ce_(2)Co1Cu1is up to 77.2 m^(2)/g, and the average pore size is 10.62 nm. It exhibits redox and sufficient Ce^(4+)and Ce^(^(3+)), and reactive oxygen species, and has maximum O-H and C=O in the five catalyst samples. The catalytic activity of Ce2Co1Cu1is the best at low temperature, with the T50and T90values of 235 and 258°C at a space velocity of 32000 h-1, respectively. The o-xylene is oxidized to o-methyl benzaldehyde, and then further oxidized to o-methylbenzoic acid, and finally CO_(2)and H2O are formed.展开更多
Plasma-coupled catalysis is a promising volatile organic co mpounds(VOCs) removal technology because of its interactional principles of plasma decomposition and catalytic oxidation.However,the problem of harmful by-pr...Plasma-coupled catalysis is a promising volatile organic co mpounds(VOCs) removal technology because of its interactional principles of plasma decomposition and catalytic oxidation.However,the problem of harmful by-products is still in trouble.A series of rare earth doped RE-NiO_(x)(RE=Ce,Y,La) composite oxides were synthesized by metal organic frameworks(MOFs)-derived method for coupled plasma oxidation of benzene and by-product ozone removal.Compared with plasma alone,the 1%La-NiO_(x)catalyst shows the best enhancement of 50% for benzene conversion with complete removal of a maximum of 800 ppm ozone.The energy consumption for 90% benzene removal efficiency(η90%) is also reduced from 3600 to 1200 J/L.Characterization re sults of RE-NiO_(x) catalysts indicate that the doping of La causes interaction and synergistic effect between La and Ni,and the surface oxygen and lattice oxygen with defects play crucial roles in benzene oxidation and ozone decomposition,respectively.In addition,the decomposition mechanism of benzene and ozone under plasma is proposed.Plasma is responsible for the indiscriminate bond breaking in benzene and oxygen to form a variety of organic intermediates and ozone,while the La-NiO_(x) catalyst selectively oxidizes the intermediates to CO_(x)/H2O and decomposes the ozone into oxygen.展开更多
基金supported by the National Natural Science Foundation of China (No.21776156).
文摘High activity and productivity of MoVNbTeO_(x) catalyst are challenging tasks in oxidative dehydrogenation of ethane(ODHE)for industrial application.In this work,phase-pure M1 with 30 wt%CeO_(2) composite catalyst was treated by oxygen plasma to further enhance catalyst performance.The results show that the oxygen vacancies generated by the solid-state redox reaction between M1 and CeO_(2) capture active oxygen species in gas and transform V^(4+)to V^(5+)without damage to M1 structure.The space-time yield of ethylene of the plasma-treated catalyst was significantly increased,in which the catalyst shows an enhancement near~100% than that of phase-pure M1 at 400℃ for ODHE process.Plasma treatment for catalysts demonstrates an effective way to convert electrical energy into chemical energy in catalyst materials.Energy conversion is achieved by using the catalyst as a medium.
文摘利用Kirkendall效应,在溶剂热条件下成功制备了复合氧化物Ce1-xTixO2的纳米空心球,并通过XRD,TEM和XPS等测试手段进行了表征.结果表明,Ce1-xTixO2纳米空心球的粒径为65 nm,小于初始状态的CeO2纳米球,并且Ce1-xTixO2纳米空心球的结构与前驱体CeO2晶体结构相同,均为面心立方结构.Ti/Ce摩尔比和温度是影响产物形貌和结构的重要因素,通过实验得出最佳反应条件为n(Ti)∶n(Ce)=8∶10,于190℃反应8 h.
基金supported by the National Natural Science Foundation of China (11079033)National Basic Research Program of China (973 Program, 2013CB933104, 2010CB923301)Fundamental Research Funds for the Central Universities (WK2060030005)~~
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China (LY20E080003)。
文摘Ce_(x)Co_(y)Cuzoxide composite catalysts were prepared by using polyethylene glycol, citrate sol-gel method combined with PMMA template for the oxidation of o-xylene. The catalysts were characterized by the Xray diffraction(XRD), H2-temperature programmed reduction(H2-TPR), X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared spectroscopy(FT-IR), etc. The catalytic activity for o-xylene was investigated. The catalytic degradation pathway and mechanism of o-xylene were inferred. The results show that Ce O_(2)is mainly present on the surface of all catalysts. The surface area of Ce_(2)Co1Cu1is up to 77.2 m^(2)/g, and the average pore size is 10.62 nm. It exhibits redox and sufficient Ce^(4+)and Ce^(^(3+)), and reactive oxygen species, and has maximum O-H and C=O in the five catalyst samples. The catalytic activity of Ce2Co1Cu1is the best at low temperature, with the T50and T90values of 235 and 258°C at a space velocity of 32000 h-1, respectively. The o-xylene is oxidized to o-methyl benzaldehyde, and then further oxidized to o-methylbenzoic acid, and finally CO_(2)and H2O are formed.
基金Project supported by the National Natural Science Foundation of China(22176123,U1832155)the National Key Research&Development Plan(2017YFC0211804).
文摘Plasma-coupled catalysis is a promising volatile organic co mpounds(VOCs) removal technology because of its interactional principles of plasma decomposition and catalytic oxidation.However,the problem of harmful by-products is still in trouble.A series of rare earth doped RE-NiO_(x)(RE=Ce,Y,La) composite oxides were synthesized by metal organic frameworks(MOFs)-derived method for coupled plasma oxidation of benzene and by-product ozone removal.Compared with plasma alone,the 1%La-NiO_(x)catalyst shows the best enhancement of 50% for benzene conversion with complete removal of a maximum of 800 ppm ozone.The energy consumption for 90% benzene removal efficiency(η90%) is also reduced from 3600 to 1200 J/L.Characterization re sults of RE-NiO_(x) catalysts indicate that the doping of La causes interaction and synergistic effect between La and Ni,and the surface oxygen and lattice oxygen with defects play crucial roles in benzene oxidation and ozone decomposition,respectively.In addition,the decomposition mechanism of benzene and ozone under plasma is proposed.Plasma is responsible for the indiscriminate bond breaking in benzene and oxygen to form a variety of organic intermediates and ozone,while the La-NiO_(x) catalyst selectively oxidizes the intermediates to CO_(x)/H2O and decomposes the ozone into oxygen.