Catalytic oxidation of NO into NO2 is a promising method for NOx emission control. The aim of this study was to de-velop an economic and environmental-friendly catalyst for NO catalytic oxidation. Herein a CeFeOx comp...Catalytic oxidation of NO into NO2 is a promising method for NOx emission control. The aim of this study was to de-velop an economic and environmental-friendly catalyst for NO catalytic oxidation. Herein a CeFeOx complex oxide catalyst for catalytic oxidation of NO was prepared by coprecipitation method. After that the catalytic performance of this catalyst was meas-ured on a fixed-bed reactor. It was found that the intrinsic activity of CeFeOx was higher than that of CeOx and FeOx. The charac-terization techniques of Brumauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature programmed reduction with H2 (H2-TPR), temperature programmed desorption with NO+O2 (NO+O2-TPD) and X-ray photoelectron spectroscopy (XPS) were performed to investigate the surface area, crystal structure, redox property and NOx adsorption behavior of the catalyst samples. From the characterization results, it was concluded that the low crystallinity of CeFeOx promoted the dispersion of active species, as a result, enhancing the redox ability and NO adsorption capacity of CeFeOx catalyst, which is favorable to NO catalytic oxida-tion. Furthermore, the presence of much chemisorbed oxygen on CeFeOx catalyst also made a great contribution to its good cata-lytic performance.展开更多
基金Project supported by National Natural Science Foundation of China(21546014)the Natural Science Foundation of Shanghai(14ZR1417800)
文摘Catalytic oxidation of NO into NO2 is a promising method for NOx emission control. The aim of this study was to de-velop an economic and environmental-friendly catalyst for NO catalytic oxidation. Herein a CeFeOx complex oxide catalyst for catalytic oxidation of NO was prepared by coprecipitation method. After that the catalytic performance of this catalyst was meas-ured on a fixed-bed reactor. It was found that the intrinsic activity of CeFeOx was higher than that of CeOx and FeOx. The charac-terization techniques of Brumauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature programmed reduction with H2 (H2-TPR), temperature programmed desorption with NO+O2 (NO+O2-TPD) and X-ray photoelectron spectroscopy (XPS) were performed to investigate the surface area, crystal structure, redox property and NOx adsorption behavior of the catalyst samples. From the characterization results, it was concluded that the low crystallinity of CeFeOx promoted the dispersion of active species, as a result, enhancing the redox ability and NO adsorption capacity of CeFeOx catalyst, which is favorable to NO catalytic oxida-tion. Furthermore, the presence of much chemisorbed oxygen on CeFeOx catalyst also made a great contribution to its good cata-lytic performance.