CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted comple...CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted completely at lower temperature. The redox behavior and the crystallization process of the dried gel were studied by thermogravimetric analysis and infrared spectroscopy. The synthesized powders were characterized by X-ray powder diffraction and transmission electron microscopy. In addition, rare earth elements ion-selective electrodes based on acetyl cellulose were prepared using ultra fine cerium oxide powders.展开更多
CeO_2 stabilized ZrO_2 ultra fine nanoparticles were successfully synthesized via a simple and effective sol-gel synthetic approach by using zirconylchloride octahydrate, cerium nitrate hexahydrate, and citric acid as...CeO_2 stabilized ZrO_2 ultra fine nanoparticles were successfully synthesized via a simple and effective sol-gel synthetic approach by using zirconylchloride octahydrate, cerium nitrate hexahydrate, and citric acid as starting materials. A series of techniques, including X-ray diffraction(XRD), thermogravimetry(TG), differential scanning calorimetry(DSC), Fourier transform infrared spectroscopy(FTIR), transmission electron microscopy(TEM), and N_2-sorption analysis, were used to characterize the structure and morphology of the asprepared samples. XRD studies indicate that the as-synthesized sample is of well crystallized tetragonal phase of CeO_2 stabilized ZrO_2 with high purity. TEM images show that the as-synthesized sample is composed of a large number of fine dispersive nanoparticles with an average size about 10 nm. The as-synthesized tetragonal CeO_2 stabilized ZrO_2 sample was heated at different temperatures in order to evaluate its thermal stability. The exprimental results reveal that the as-synthesized tetragonal CeO_2 stabilized ZrO_2 sample exhibits excellent stability without the occurrence of phase transformation.展开更多
Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts ...Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells.展开更多
The successful development of Li-O_2 battery technology depends on developing a stable and efficient cathode. As an important step toward this goal, for the first time, we report the development of CeO_2 nanoparticles...The successful development of Li-O_2 battery technology depends on developing a stable and efficient cathode. As an important step toward this goal, for the first time, we report the development of CeO_2 nanoparticles modified NiCo_2O_4 nanowire arrays(NWAs) grown on the carbon textiles as a new carbon-free and binder-free cathode system. In this study, the Li-O_2 battery with the CeO_2@NiCo_2O_4 NWAs has exhibited much reduced overpotentials, a high discharge capacity, an improved cycling stability,outperforming the Li-O_2 battery with NiCo_2O_4 NWAs. These improvements can be attributed to both the tailored morphology of discharge product and improved oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) activity after CeO_2 NPs deposition. To a considerable extent, this idea of cathode construction including structure design and composition optimization can provide guidance for further researches in developing more powerful cathode for Li-O_2 battery.展开更多
The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparti...The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA). The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10^-7-5.0 × 10^- 4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0 ×10^-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.展开更多
The CeO2/epoxy resin composite coating was deposited on NdFeB substrate by cathode electrophoresis method for enhancing the anticorrosion and anti-wear performances. The morphologies and structures were characterized ...The CeO2/epoxy resin composite coating was deposited on NdFeB substrate by cathode electrophoresis method for enhancing the anticorrosion and anti-wear performances. The morphologies and structures were characterized by a scanning electron microscope and an X-ray diffractometer. The micro hardness of the composite coating was evaluated by a microhardness tester. The corrosive behaviors of the coatings were studied by potentiodynamic polarization curve, electrochemical impedance spectroscopy and neutral salt spray tests. The concentration of CeO2 nanoparticles(NPs) in the electrophoresis bath was optimized according to the coating structures and anticorrosion performances. The results show that CeO2 NPs can enhance the microhardness of the composite coatings. Moreover, the nanoparticles disperse uniformly in the matrix when the concentration is lower than 30 g/L. The microhardness of CeO2/epoxy resin(30 g/L) composite coating is about 63% higher than that of the blank epoxy resin coating. And the NSS time of the CeO2/epoxy resin(30 g/L) composite coated sample can reach 1248 h.Meanwhile, the composite coatings possess no deteriorate influence on the magnetic properties of NdFeB substrates. The anticorrosion mechanisms of the composite coatings on the NdFeB substrate are deeply discussed.展开更多
基金The work was financially supported by the Project KJCXGC-O1 of Northwest Normal University, Lanzhou and theExcellent Young Te
文摘CeO2 nanoparticles with an average diameter of about 30 nm were prepared by sol-gel method at lower temperature. The gel, transformed from the aqueous solution of metal nitrate and citric acid, can be combusted completely at lower temperature. The redox behavior and the crystallization process of the dried gel were studied by thermogravimetric analysis and infrared spectroscopy. The synthesized powders were characterized by X-ray powder diffraction and transmission electron microscopy. In addition, rare earth elements ion-selective electrodes based on acetyl cellulose were prepared using ultra fine cerium oxide powders.
基金Funded by the National Natural Science Foundation of China(Nos.U1304520 and U1404613)the State Key Lab of Materials Synthesis and Processing of Wuhan University of Technology for the fund support(2012-KF-5)+1 种基金the Education Department of Henan Province(2013GGJS-185)the program for New Century Excellent Talents in University(NECT-12-0655)
文摘CeO_2 stabilized ZrO_2 ultra fine nanoparticles were successfully synthesized via a simple and effective sol-gel synthetic approach by using zirconylchloride octahydrate, cerium nitrate hexahydrate, and citric acid as starting materials. A series of techniques, including X-ray diffraction(XRD), thermogravimetry(TG), differential scanning calorimetry(DSC), Fourier transform infrared spectroscopy(FTIR), transmission electron microscopy(TEM), and N_2-sorption analysis, were used to characterize the structure and morphology of the asprepared samples. XRD studies indicate that the as-synthesized sample is of well crystallized tetragonal phase of CeO_2 stabilized ZrO_2 with high purity. TEM images show that the as-synthesized sample is composed of a large number of fine dispersive nanoparticles with an average size about 10 nm. The as-synthesized tetragonal CeO_2 stabilized ZrO_2 sample was heated at different temperatures in order to evaluate its thermal stability. The exprimental results reveal that the as-synthesized tetragonal CeO_2 stabilized ZrO_2 sample exhibits excellent stability without the occurrence of phase transformation.
基金supported by the National Natural Science Foundation of China (21307038 and 21577046)Key Project of Chinese Ministry of Education (212115)Physical Chemistry Experiment of Huanggang Normal University (2015CK12)~~
文摘Pt/Ni catalysts modified with CeO2 nanoparticles were prepared by simple composite electrodeposition of Ni and CeO2,and spontaneous Ni partial replacement by Pt processes.The as-prepared CeO2-modified Pt/Ni catalysts showed enhanced catalytic performance for ethanol electro-oxidation compared with pure Pt/Ni,and acetate species were proposed to be the main products of the oxidation when using these catalysts.The content of CeO2 in the as-prepared catalysts influenced their catalytic activity,with Pt/NiCe2(obtained from an electrolyte containing 100 mg/L CeO2 nanoparticles) exhibiting higher activity and relatively better stability in ethanol electro-oxidation.This was mainly due to the oxygen storage capacity of CeO2,the interaction between Pt and CeO2/Ni,and the relatively small contact and charge transfer resistances.The results of this work thus suggest that electrocatalysts with low price and high activity can be rationally designed and produced by a simple route for use in direct ethanol fuel cells.
基金supported by the Ministry of Science and Technology of the People’s Republic of China (2017YFA0206704, 2016YFB0100103)the National Basic Research Program of China (2014CB932300)+3 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010404)Technology and Industry for National Defence of the People’s Republic of China (JCKY2016130B010)the National Natural Science Foundation of China (51771177, 21422108, 51472232)Jilin Province Science and Technology Development Program (20160101289JC)
文摘The successful development of Li-O_2 battery technology depends on developing a stable and efficient cathode. As an important step toward this goal, for the first time, we report the development of CeO_2 nanoparticles modified NiCo_2O_4 nanowire arrays(NWAs) grown on the carbon textiles as a new carbon-free and binder-free cathode system. In this study, the Li-O_2 battery with the CeO_2@NiCo_2O_4 NWAs has exhibited much reduced overpotentials, a high discharge capacity, an improved cycling stability,outperforming the Li-O_2 battery with NiCo_2O_4 NWAs. These improvements can be attributed to both the tailored morphology of discharge product and improved oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) activity after CeO_2 NPs deposition. To a considerable extent, this idea of cathode construction including structure design and composition optimization can provide guidance for further researches in developing more powerful cathode for Li-O_2 battery.
基金Project supported by the National Natural Science Foundation of China (No. 20675001), Anhui Provincial Natural Science Foundation (No. 050460301) and the Science Foundation of Education 0ffice of Anhui Province (Nos. 2006kj145B and 2006kj119B).
文摘The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA). The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10^-7-5.0 × 10^- 4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0 ×10^-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.
基金Project supported by the China Postdoctoral Science Foundation(2017M612065)Natural Science Foundation of Anhui Province(1408085MKL73,1408085MKL72)+1 种基金Anhui Key Research and Development Plan(1704a0902020)Fundamental Research Funds for the Central Universities(2016bh2x0004)
文摘The CeO2/epoxy resin composite coating was deposited on NdFeB substrate by cathode electrophoresis method for enhancing the anticorrosion and anti-wear performances. The morphologies and structures were characterized by a scanning electron microscope and an X-ray diffractometer. The micro hardness of the composite coating was evaluated by a microhardness tester. The corrosive behaviors of the coatings were studied by potentiodynamic polarization curve, electrochemical impedance spectroscopy and neutral salt spray tests. The concentration of CeO2 nanoparticles(NPs) in the electrophoresis bath was optimized according to the coating structures and anticorrosion performances. The results show that CeO2 NPs can enhance the microhardness of the composite coatings. Moreover, the nanoparticles disperse uniformly in the matrix when the concentration is lower than 30 g/L. The microhardness of CeO2/epoxy resin(30 g/L) composite coating is about 63% higher than that of the blank epoxy resin coating. And the NSS time of the CeO2/epoxy resin(30 g/L) composite coated sample can reach 1248 h.Meanwhile, the composite coatings possess no deteriorate influence on the magnetic properties of NdFeB substrates. The anticorrosion mechanisms of the composite coatings on the NdFeB substrate are deeply discussed.