The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composi...The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composite was fabricated through a low-temperature solution-phase route for the rst time. The XRD, SEM, EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4, Bi2MoO6, and Ag. Ag nanopar-ticles were photodeposited on the surface of Bi2MoO6/BiPO4 nanosheets, which not only increase visible-light absorption via the surface plasmon resonance, but also serve as good electron acceptor for facilitating quick photoexcited electron transfer. The interface between Bi2MoO6 and BiPO4 facilitates the migration of photoinduced electrons from Bi2MoO6 to BiPO4, which is also conductive to reduce the recombination of electron-holes. Thus, the ternary heterostructured Ag-Bi2MoO6/BiPO4 composite showed signi cant photocatalytic activity, higher than pure Bi2MoO6, BiPO4, and Bi2MoO6/BiPO4. Moreover, the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4 heterostructure related to the band positions of the semiconductors was also discussed. In addition, the quenching effects of di erent scavengers revealed that the reactive ·OH and O2·- play a major role in the phenol red decolorization.展开更多
采用水热法合成了具有很好催化性能的Bi_2MoO_6催化剂,并利用XRD、FT-IR、SEM和EDS等分析技术对其结构和形貌进行表征。以Bi_2MoO_6为催化剂,1-丁基-3-甲基咪唑盐酸盐([BMIM]Cl)离子液体为萃取剂,H_2O_2为氧化剂氧化脱除模拟油中的二苯...采用水热法合成了具有很好催化性能的Bi_2MoO_6催化剂,并利用XRD、FT-IR、SEM和EDS等分析技术对其结构和形貌进行表征。以Bi_2MoO_6为催化剂,1-丁基-3-甲基咪唑盐酸盐([BMIM]Cl)离子液体为萃取剂,H_2O_2为氧化剂氧化脱除模拟油中的二苯并噻吩(BDT)。考察了反应温度,氧化剂、离子液体和催化剂使用量,不同种类的含硫化合物以及催化剂稳定性等因素对脱硫效果的影响。在V(oil)=5 m L,V(H_2O_2)=0.2 m L,V([BMIM]Cl)=1.0 m L,m(Bi_2MoO_6)=0.02 g,T=60℃的最佳操作条件下,模拟油中的DBT的脱除率可达到94.58%。催化剂重复使用5次活性无明显下降。同时,详细地研究了该催化氧化反应的反应机理。展开更多
Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh...Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh-like Bi2MoO6 sample exhibited excellent visible-light-driven photocatalytic e ciency. The photocatalytic activity of the mesh-like Bi2MoO6 sample was much higher than that of bulk Bi2MoO6 sample prepared by solid-state reac-tion. Di erence in the photocatalytic activities of the mesh-like Bi2MoO6 sample and bulk Bi2MoO6 sample was further investigated.展开更多
文摘The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composite was fabricated through a low-temperature solution-phase route for the rst time. The XRD, SEM, EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4, Bi2MoO6, and Ag. Ag nanopar-ticles were photodeposited on the surface of Bi2MoO6/BiPO4 nanosheets, which not only increase visible-light absorption via the surface plasmon resonance, but also serve as good electron acceptor for facilitating quick photoexcited electron transfer. The interface between Bi2MoO6 and BiPO4 facilitates the migration of photoinduced electrons from Bi2MoO6 to BiPO4, which is also conductive to reduce the recombination of electron-holes. Thus, the ternary heterostructured Ag-Bi2MoO6/BiPO4 composite showed signi cant photocatalytic activity, higher than pure Bi2MoO6, BiPO4, and Bi2MoO6/BiPO4. Moreover, the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4 heterostructure related to the band positions of the semiconductors was also discussed. In addition, the quenching effects of di erent scavengers revealed that the reactive ·OH and O2·- play a major role in the phenol red decolorization.
基金supported by the National Natural Science Foundation of China(21407059,61308095)Science Development Project of Jilin Province,China(20130522071JH,20130102004JC,20140101160JC)~~
文摘采用水热法合成了具有很好催化性能的Bi_2MoO_6催化剂,并利用XRD、FT-IR、SEM和EDS等分析技术对其结构和形貌进行表征。以Bi_2MoO_6为催化剂,1-丁基-3-甲基咪唑盐酸盐([BMIM]Cl)离子液体为萃取剂,H_2O_2为氧化剂氧化脱除模拟油中的二苯并噻吩(BDT)。考察了反应温度,氧化剂、离子液体和催化剂使用量,不同种类的含硫化合物以及催化剂稳定性等因素对脱硫效果的影响。在V(oil)=5 m L,V(H_2O_2)=0.2 m L,V([BMIM]Cl)=1.0 m L,m(Bi_2MoO_6)=0.02 g,T=60℃的最佳操作条件下,模拟油中的DBT的脱除率可达到94.58%。催化剂重复使用5次活性无明显下降。同时,详细地研究了该催化氧化反应的反应机理。
文摘Mesh-like Bi2MoO6 product was successfully synthesized by a hydrothermal method without using any surfactant or template. The pH value played an important role in the formation of this morphology. The as-prepared mesh-like Bi2MoO6 sample exhibited excellent visible-light-driven photocatalytic e ciency. The photocatalytic activity of the mesh-like Bi2MoO6 sample was much higher than that of bulk Bi2MoO6 sample prepared by solid-state reac-tion. Di erence in the photocatalytic activities of the mesh-like Bi2MoO6 sample and bulk Bi2MoO6 sample was further investigated.