Heavy oil is characterized by high viscosity.High viscosity makes it challenging to recover and transport.HZSM-5,MoO_(3)/HZSM-5,ZrO_(2)/HZSM-5 and MoO_(3)–ZrO_(2)/HZSM-5 catalysts were developed to promote in situ de...Heavy oil is characterized by high viscosity.High viscosity makes it challenging to recover and transport.HZSM-5,MoO_(3)/HZSM-5,ZrO_(2)/HZSM-5 and MoO_(3)–ZrO_(2)/HZSM-5 catalysts were developed to promote in situ desulfurization and viscosity reduction of heavy oil.The physical and chemical properties of catalysts were characterized by XPS,XRD,TEM,NH3-TPD,etc.The effects of temperature,catalyst type and addition amount on viscosity and composition of heavy oil were evaluated.The results showed that the presence of MoO_(3)–ZrO_(2)/HZSM-5 nanoparticles during aquathermolysis could improve the oil quality by reducing the heavy fractions.It reduced viscosity by 82.56%after the reaction at 280℃ and catalyst addition of 1 wt%.The contents of resins and asphaltic in the oil samples were 5.69%lower than that in the crude oil.Sulfur content decreased from 1.45%to 1.03%.The concentration of H2S produced by the reaction was 2225 ppm.The contents of sulfur-containing functional groups sulfoxide and sulfone sulfur in the oil samples decreased by 19.92%after the catalytic reaction.The content of stable thiophene sulfur increased by 5.71%.This study provided a basis for understanding the mechanism of heavy oil desulfurization and viscosity reduction.展开更多
CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of Ce...CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.展开更多
基金support provided by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX05012-002-005)Shandong Provincial Natural Science Foundation(Grant no.:ZR2021QE051)+1 种基金National Natural Science Foundation of China(Grant no.:52206291)the Fundamental Research Funds for the Central Universities(Grant no.:22CX06030A).
文摘Heavy oil is characterized by high viscosity.High viscosity makes it challenging to recover and transport.HZSM-5,MoO_(3)/HZSM-5,ZrO_(2)/HZSM-5 and MoO_(3)–ZrO_(2)/HZSM-5 catalysts were developed to promote in situ desulfurization and viscosity reduction of heavy oil.The physical and chemical properties of catalysts were characterized by XPS,XRD,TEM,NH3-TPD,etc.The effects of temperature,catalyst type and addition amount on viscosity and composition of heavy oil were evaluated.The results showed that the presence of MoO_(3)–ZrO_(2)/HZSM-5 nanoparticles during aquathermolysis could improve the oil quality by reducing the heavy fractions.It reduced viscosity by 82.56%after the reaction at 280℃ and catalyst addition of 1 wt%.The contents of resins and asphaltic in the oil samples were 5.69%lower than that in the crude oil.Sulfur content decreased from 1.45%to 1.03%.The concentration of H2S produced by the reaction was 2225 ppm.The contents of sulfur-containing functional groups sulfoxide and sulfone sulfur in the oil samples decreased by 19.92%after the catalytic reaction.The content of stable thiophene sulfur increased by 5.71%.This study provided a basis for understanding the mechanism of heavy oil desulfurization and viscosity reduction.
基金Supported by the National Natural Science Foundation of China(51204179,51204182,51674256)The Natural Science Foundation of Jiangsu Province,China(BK20141242)
文摘CeO_2–CaO–Pd/HZSM-5 catalyst was prepared for the dimethyl ether(DME) one-step synthesis in a continuous fixed-bed micro-reactor from the sulfur-containing syngas. The catalytic stability over hybrid catalyst of CeO_2–CaO–Pd/HZSM-5 was investigated to ensure that the kinetics experimental results were not significantly influenced by induction period and catalytic deactivation. A large number of kinetic data points(40 sets) were obtained over a range of temperature(240–300 °C), pressure(3–4 MPa), gas hourly space velocity(GHSV)(2000–3000 L·kg^(-1)·h^(-1)) and H_2/CO mole ratio(2–3). Kinetic model for the methanol synthesis reaction and the dehydration of methanol were obtained separately according to reaction mechanism and Langmuir–Hinshelwood mechanism. Regression parameters were investigated by the method combining the simplex method and Runge–Kutta method. The model calculations were in appropriate accordance with the experimental data.