In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion metho...In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.展开更多
A new compound based on immobilizing of Pd6(RuL3)8(BF4)28 (L=2-(pyridin-3-yl)-1H-imidazo [4,5-f][1,10]-phenanthroline) cage (MOC-16) on g-C3N4 was synthesized. Infrared spectrum and powder X-ray diffraction were used ...A new compound based on immobilizing of Pd6(RuL3)8(BF4)28 (L=2-(pyridin-3-yl)-1H-imidazo [4,5-f][1,10]-phenanthroline) cage (MOC-16) on g-C3N4 was synthesized. Infrared spectrum and powder X-ray diffraction were used to characterize structure of hybrid MOC-16/g-C3N4, as well as UV-vis absorption spectrum and X-ray photoelectron spectroscopy were carried out to unveil photocatalytic mechanism. With the introduction of MOC-16, the absorption edge of MOC-16/g-C3N4 in UV-vis spectrum extended apparently to long-wavelength region compared with pristine g-C3N4. H2 evolution yielded with MOC-16/g-C3N4 in aqueous solution containing TEOA was much higher than that with RuL3/g-C3N4, Pd/RuL3/g-C3N4 and mixture of MOC-16 and g-C3N4, showing that the octahedral cage structure with high-efficient electron transfer and the interface interaction between MOC-16 and g-C3N4 were significant for improvement of H2 evolution.展开更多
文摘In this study,the enhancement of catalytic activity of ceria when modified with co-catalysts such as graphitic carbon nitride and silver was establishe d.The material was synthe sized using phytogenic combustion method,a green alternative to the traditional preparative routes.The catalyst was characterized using XRD,FTIR,SEM,EDX,XPS and TEM techniques.The synergistic effect of the composite CeO2/g-C3 N4/Ag was tested for catalytic reduction of 4-nitrophenol in the prese nce of sodium borohydride.The reaction was carried out at room tempe rature without any light source or exte rnal stirring.The individual and combined effects of four parameters,viz.,concentration of 4-NP,amount of catalyst,amount of NaBH4 and time for the reduction of reduction 4-NP were investigated using Box-Behnken design of response surface methodology(RSM).This statistical model was used to optimize the reaction conditions for maximum reduction of 4-NP.The optimum conditions for the reduction reaction are found to be 0.01 mmol/L 4-NP,15 mg catalyst,20 mg NaBH4 and 13.7 min time interval.
基金supported by the National Natural Science Foundation of China(21875293,21821003,21890380,21720102007,21572280)the Natural Science Foundation of Guangdong Province(2016A030313268)+2 种基金the STP Project of Guangzhou(201804010386,201707010114)the Fundamental Research Funds for the Central Universities(17lgzd18,17lgzd01)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province~~
文摘A new compound based on immobilizing of Pd6(RuL3)8(BF4)28 (L=2-(pyridin-3-yl)-1H-imidazo [4,5-f][1,10]-phenanthroline) cage (MOC-16) on g-C3N4 was synthesized. Infrared spectrum and powder X-ray diffraction were used to characterize structure of hybrid MOC-16/g-C3N4, as well as UV-vis absorption spectrum and X-ray photoelectron spectroscopy were carried out to unveil photocatalytic mechanism. With the introduction of MOC-16, the absorption edge of MOC-16/g-C3N4 in UV-vis spectrum extended apparently to long-wavelength region compared with pristine g-C3N4. H2 evolution yielded with MOC-16/g-C3N4 in aqueous solution containing TEOA was much higher than that with RuL3/g-C3N4, Pd/RuL3/g-C3N4 and mixture of MOC-16 and g-C3N4, showing that the octahedral cage structure with high-efficient electron transfer and the interface interaction between MOC-16 and g-C3N4 were significant for improvement of H2 evolution.