The binary composite photo-catalysts CeO2/ZiO2, ZrO2/ZiO2 and the ternary composite photo-catalysts H3PW12040-CeO2/TiO2, H3PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermog...The binary composite photo-catalysts CeO2/ZiO2, ZrO2/ZiO2 and the ternary composite photo-catalysts H3PW12040-CeO2/TiO2, H3PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalytic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystallization process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 alSO enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than un-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s^-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.展开更多
采用柠檬酸为络合剂,溶胶-凝胶法制备系列CeO_2-CuO/ZnO/Al_2O_3,在3.0 MPa压力和220~230℃反应条件下,甲苯二胺(TDA)和乙烯催化合成二乙基甲苯二胺(DETDA)为探针反应,考察其催化性能,其中CeO_2掺杂量为3%,催化活性最高。通过X射线衍射(...采用柠檬酸为络合剂,溶胶-凝胶法制备系列CeO_2-CuO/ZnO/Al_2O_3,在3.0 MPa压力和220~230℃反应条件下,甲苯二胺(TDA)和乙烯催化合成二乙基甲苯二胺(DETDA)为探针反应,考察其催化性能,其中CeO_2掺杂量为3%,催化活性最高。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、差热重量分析法(DTG-DTA)、核磁氢谱1 H NMR对CeO_2-CuO/ZnO/Al_2O_3、DETDA、TDA进行检测和表征,揭示了它们的微观结构和内在规律性。XRD检测发现CeO_2掺杂量增多,CeO_2-CuO/ZnO/Al_2O_3衍射峰强度增强,提高了晶化程度,金属原子存在协同效应,增多了活性中心。FT-IR揭示了DETDA内部化学键键型,拥有甲基、亚甲基的多取代芳胺。DTG-DTA检测出的质量变化与热效应两种信息,DETDA的DTG-DTA曲线在66.0、271.0℃存在二个吸热峰,分别为氨基脱离苯环、DETDA的分解产生。通过1 H NMR对DETDA、TDA检测,得到DETDA、TDA的氢原子的数目分别为18和10,分子中各个氢核对应所归属的吸收峰,分别和它们分子式中的氢原子数目吻合。CeO_2-CuO/ZnO/Al_2O_3催化合成DETDA,反应条件温和,工艺流程简单,容易实现高效率和连续化工业生产,因此具有广阔的发展前景。展开更多
The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The ...The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.展开更多
基金the Hunan Provin-cial Natural Science Foundationthe Scientific Research Fund of Education Department and the Organic Chemistry Key Subject
文摘The binary composite photo-catalysts CeO2/ZiO2, ZrO2/ZiO2 and the ternary composite photo-catalysts H3PW12040-CeO2/TiO2, H3PW12O40-ZrO2/TiO2 were prepared by sol-gel method. The catalysts were characterized by thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalytic elimination of methanol was used as model reaction to evaluate the photocatalytic activity of the composite catalysts under ultraviolet light irradiation. The effects of doped content, activation temperature, time, initial concentration of methanol and gas flow rate on the catalytic activity were investigated. The results showed that after doping a certain amount of CeO2 and ZrO2, crystallization process of TiO2 was restrained, particles of catalysts are smaller and more uniform. Doping ZrO2 not only significantly improved the catalytic activity, but also increased thermal stability. Doping H3PW12O40 alSO enhanced the catalytic activity. The catalytic activities of binary and ternary composite photocatalysts were significantly higher than un-doped TiO2. The dynamics law of photocatalytic reaction over the binary CeO2/TiO2 and ZrO2/TiO2 catalysts has been studied. The activation energy 15.627 and 15.631 kJ/mol and pre-exponential factors 0.5176 and 0.9899 s^-1 over each corresponding catalyst were obtained. This reaction accords to the first order dynamics law.
文摘采用柠檬酸为络合剂,溶胶-凝胶法制备系列CeO_2-CuO/ZnO/Al_2O_3,在3.0 MPa压力和220~230℃反应条件下,甲苯二胺(TDA)和乙烯催化合成二乙基甲苯二胺(DETDA)为探针反应,考察其催化性能,其中CeO_2掺杂量为3%,催化活性最高。通过X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、差热重量分析法(DTG-DTA)、核磁氢谱1 H NMR对CeO_2-CuO/ZnO/Al_2O_3、DETDA、TDA进行检测和表征,揭示了它们的微观结构和内在规律性。XRD检测发现CeO_2掺杂量增多,CeO_2-CuO/ZnO/Al_2O_3衍射峰强度增强,提高了晶化程度,金属原子存在协同效应,增多了活性中心。FT-IR揭示了DETDA内部化学键键型,拥有甲基、亚甲基的多取代芳胺。DTG-DTA检测出的质量变化与热效应两种信息,DETDA的DTG-DTA曲线在66.0、271.0℃存在二个吸热峰,分别为氨基脱离苯环、DETDA的分解产生。通过1 H NMR对DETDA、TDA检测,得到DETDA、TDA的氢原子的数目分别为18和10,分子中各个氢核对应所归属的吸收峰,分别和它们分子式中的氢原子数目吻合。CeO_2-CuO/ZnO/Al_2O_3催化合成DETDA,反应条件温和,工艺流程简单,容易实现高效率和连续化工业生产,因此具有广阔的发展前景。
基金the Deanship of Scientific Research at KSU for funding the work through the research group Project # RGP-VPP119
文摘The nature of support and type of active metal affect catalytic performance. In this work, the effect of using La203 as promoter and support for Ni/γ-A1203 catalysts in dry reforming of methane was investigated. The reforming reactions were carried out at atmosphenc pressure in the temperature range of 500-2700℃. The activity and stability of the catalyst, carbon formation, and syngas (H2/CO) ratio were determined. Various techniques were applied for characterization of both fresh and used catalysts. Addition of La2O3 to the catalyst matrix improved the dispersion of Ni and adsorption of CO2, thus its activity and stability enhanced.