Sub-micrometer ultra fine CeO2-ZrO2 mixed oxides have been prepared by milling solid cerium carbonate and zirconium oxy-chloride with ammonia and followed by filtering, drying and calcining procedures. The effects of ...Sub-micrometer ultra fine CeO2-ZrO2 mixed oxides have been prepared by milling solid cerium carbonate and zirconium oxy-chloride with ammonia and followed by filtering, drying and calcining procedures. The effects of Ce/Zr molar ratio, milling time and calcining temperature on the phase composition, particle size and morphology, surface charge, as well as the polishing property were investigated. The results show that the mixed oxide calcined at 1 000 ℃ is composed of cubic ceria doped with zirconium and tetragonal zirconia doped with cerium, and the phase composition varies with calcination temperature and the Ce/Zr molar ratio. The monoclinic zirconia is observed when decreasing calcination temperature and shortening milling time, demonstrating that milling and calcining can force the phase transformation from monoclinic zirconia to cerium stabilized tetragonal zirconia and zirconium doped cubic ceria solid solutions. The removal rate for the optical glass polishing varies with Ce/Zr molar ratio. A synergetic polishing effect is found when Ce/Zr molar ratio below 4, and the optimal Ce/Zr molar ratio is 1∶1. At the same time, the cubic ceria content, density, particle size and surface charge all increase when calcination temperature increasing from 800 ℃ to 1 100 ℃. However, the particle morphology changes from disperse quasi-sphere to irregular aggregation and the maximal removal rate for optical glass polishing lies at 1 000 ℃.These facts show that the polishing property of the synthesized ceria-zirconia mixed oxide is affected by the particle physical characteristics comprehensively.展开更多
Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage prop...Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage properties of CeO 2 ZrO 2 solid solutions,comparison being made with unmodified CeO 2 ZrO 2 solid solutions.The results indicated that the addition of REO to CeO 2 ZrO 2 solid solutions obviously improved the oxygen storage properties of the three kinds of solid solutions calcinated at 773K.Except for Zr rich solid solutions,the modified CeO 2 ZrO 2 solid soltuions calcinated at 1173K show higher thermal stability and oxygen storage properties than unmodified solid solutions.展开更多
MnOx-CeO2 mixed oxide catalysts for methane combustion were prepared with co-precipitation me-thod.With the same content of Mn,the modified catalysts were gained via adding KMnO4.These catalysts were characterized wit...MnOx-CeO2 mixed oxide catalysts for methane combustion were prepared with co-precipitation me-thod.With the same content of Mn,the modified catalysts were gained via adding KMnO4.These catalysts were characterized with XRD,LRS,XPS and TPR techniques,respectively.It was found that the solid solution structures of the catalysts were reserved,while the low-temperature activities were promoted remarkably duo to more Mn4+ species and easier reductions through properly changing the adding amounts of Mn(NO3)2 and KMnO4.With a molar ratio of 1:4,the MnOx-CeO2 catalyst exhibited the highest activity,over which methane conversion reached 90% at a temperature as low as 390 ℃,and a better stability.展开更多
文摘Sub-micrometer ultra fine CeO2-ZrO2 mixed oxides have been prepared by milling solid cerium carbonate and zirconium oxy-chloride with ammonia and followed by filtering, drying and calcining procedures. The effects of Ce/Zr molar ratio, milling time and calcining temperature on the phase composition, particle size and morphology, surface charge, as well as the polishing property were investigated. The results show that the mixed oxide calcined at 1 000 ℃ is composed of cubic ceria doped with zirconium and tetragonal zirconia doped with cerium, and the phase composition varies with calcination temperature and the Ce/Zr molar ratio. The monoclinic zirconia is observed when decreasing calcination temperature and shortening milling time, demonstrating that milling and calcining can force the phase transformation from monoclinic zirconia to cerium stabilized tetragonal zirconia and zirconium doped cubic ceria solid solutions. The removal rate for the optical glass polishing varies with Ce/Zr molar ratio. A synergetic polishing effect is found when Ce/Zr molar ratio below 4, and the optimal Ce/Zr molar ratio is 1∶1. At the same time, the cubic ceria content, density, particle size and surface charge all increase when calcination temperature increasing from 800 ℃ to 1 100 ℃. However, the particle morphology changes from disperse quasi-sphere to irregular aggregation and the maximal removal rate for optical glass polishing lies at 1 000 ℃.These facts show that the polishing property of the synthesized ceria-zirconia mixed oxide is affected by the particle physical characteristics comprehensively.
基金The Key-Area Research and Development Program of Guangdong Province(2022B0111130004)National Natural Science Foundation of China(52272257)Innovation Team of Jiangsu Province(JSSCTD202241)。
文摘Three kinds of REO modified CeO 2 ZrO 2 solid solutions were prepared by co precipitate method.TPR and XRD measurements have been used to characterize the effect of REO on the thermal stability and oxygen storage properties of CeO 2 ZrO 2 solid solutions,comparison being made with unmodified CeO 2 ZrO 2 solid solutions.The results indicated that the addition of REO to CeO 2 ZrO 2 solid solutions obviously improved the oxygen storage properties of the three kinds of solid solutions calcinated at 773K.Except for Zr rich solid solutions,the modified CeO 2 ZrO 2 solid soltuions calcinated at 1173K show higher thermal stability and oxygen storage properties than unmodified solid solutions.
文摘MnOx-CeO2 mixed oxide catalysts for methane combustion were prepared with co-precipitation me-thod.With the same content of Mn,the modified catalysts were gained via adding KMnO4.These catalysts were characterized with XRD,LRS,XPS and TPR techniques,respectively.It was found that the solid solution structures of the catalysts were reserved,while the low-temperature activities were promoted remarkably duo to more Mn4+ species and easier reductions through properly changing the adding amounts of Mn(NO3)2 and KMnO4.With a molar ratio of 1:4,the MnOx-CeO2 catalyst exhibited the highest activity,over which methane conversion reached 90% at a temperature as low as 390 ℃,and a better stability.