The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface def...The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.展开更多
The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts ...The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.展开更多
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t...Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.展开更多
Response surface methodology(RSM)was employed to optimize the control parameters of TiO_(2)/graphene with exposed{001}facets during synthesis,and its enhanced photocatalytic activities were evaluated in the photodegra...Response surface methodology(RSM)was employed to optimize the control parameters of TiO_(2)/graphene with exposed{001}facets during synthesis,and its enhanced photocatalytic activities were evaluated in the photodegradation of toluene.Experimental results were in good agreement with the predicted results obtained using RSM with a correlation coefficient(R^(2))of 0.9345.When 22.06 mg of graphite oxide(GO)and 2.09 mL of hydrofluoric acid(HF)were added and a hydrothermal time of 28 h was used,a maximum efficiency in the degradation of toluene was achieved.X-ray diffraction(XRD),transmission electron microscopy(TEM),and scanning electron microscopy(SEM)were employed to characterize the obtained hybrid photocatalyst.The electron transferred between Ti and C retarded the combination of electron–hole pairs and hastened the transferring of electrons,which enhanced the photocatalytic activity.展开更多
The CeO_2-ZrO_2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface are...The CeO_2-ZrO_2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface area and XRD analysis. The studies indicate that the separation of the microemulsion phase during the preparation procedure can decrease the specific surface area of sample, adding hydrogen peroxide in the matrix solution can increase the specific surface area and stability of sample. The surface area of sample calcined at 550 ℃ for 5 h is 149 m^2·g^(-1), and that calcined at 900 ℃ for 6 h is 88 m^2·g^(-1). The sample with tetragonal symmetry Ce_(0.5)Zr_(0.5)O_2 phase has a higher stability.展开更多
采用RHEED与STM技术对GaAs(001)-(2×6)表面重构下的表面形貌进行研究,研究发现GaAs(001)-(2×6)重构表面是GaAs(001)-β2(2×4)重构表面经530℃,1.33μPa As BEP退火获得,在(2×6)重构下的GaAs(001)表面形貌已经进入...采用RHEED与STM技术对GaAs(001)-(2×6)表面重构下的表面形貌进行研究,研究发现GaAs(001)-(2×6)重构表面是GaAs(001)-β2(2×4)重构表面经530℃,1.33μPa As BEP退火获得,在(2×6)重构下的GaAs(001)表面形貌已经进入表面存在系列单层岛和坑覆盖的无序平坦状态。为了进一步确定(2×6)重构的原胞结构,采用球棍模型对其原胞结构进行模拟,提出新的As表面覆盖率计算方法、结合STM图片分析对球棍模型进行验证和筛选,首次在实验上证实(2×6)重构原胞中存在2个As Dimers和2个Ga Dimers,并以此重构原胞结构构建理论下的(2×6)重构表面,获得结果与STM图片高度吻合。展开更多
By means of the wet chemical surface modification,the surface of CeO_2 was modified by vinyltrimethoxysilane (VTMS).Infrared spectroscopy was used to investigate the structure of the modified CeO_2 and the result show...By means of the wet chemical surface modification,the surface of CeO_2 was modified by vinyltrimethoxysilane (VTMS).Infrared spectroscopy was used to investigate the structure of the modified CeO_2 and the result showed that VTMS has been attached onto the surface of CeO_2.Effect of VTMS concentration on the active index of the modified CeO_2 was also studied,and the result indicated that the active index of the modified CeO_2 increases with the increase of VTMS concentration and the optimal concentration o...展开更多
采用简单团簇模型结合密度泛函理论研究了CH3OH在Ga-rich Ga As(001)-(4×2)表面上的吸附与解离过程.计算结果表明,CH3OH在Ga-rich Ga As(001)-(4×2)表面上首先会形成两种化学吸附状态,然后CH3OH经解离生成CH3O自由基和H原子...采用简单团簇模型结合密度泛函理论研究了CH3OH在Ga-rich Ga As(001)-(4×2)表面上的吸附与解离过程.计算结果表明,CH3OH在Ga-rich Ga As(001)-(4×2)表面上首先会形成两种化学吸附状态,然后CH3OH经解离生成CH3O自由基和H原子吸附在表面不同位置上.通过比较各个吸附解离路径,发现解离后的H原子相对更容易吸附在位于表面第二层紧邻的As原子上.展开更多
Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐...Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐temperature range and tolerance to SO2 poisoning.In the present work,two series of Mo‐modified CeO_(2)catalysts were respectively obtained through a wet impregnation method(Mo‐CeO_(2))and a co‐precipitation method(MoCe‐cp),and the roles of the Mo species were systematically investigated.Activity tests showed that the Mo‐CeO_(2)catalyst displayed much higher NO conversion at low temperature and anti‐SO2 ability than MoCe‐cp.The optimal Mo‐CeO_(2)catalyst displayed over 80%NO elimination efficiency even at 150°C and remarkable SO2 resistance at 250°C(nearly no activity loss after 40 h test).The characterization results indicated that the introduced Mo species were highly dispersed on the Mo‐CeO_(2)catalyst surface,thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species.These factors synergistically promote the selective catalytic reduction(SCR)reaction in accordance with the Eley‐Rideal(E‐R)reaction path on the Mo‐CeO_(2)catalyst.Additionally,the molybdenum surface could protect CeO_(2)from SO2 poisoning;thus,the reducibility of the Mo‐CeO_(2)catalyst declined slightly to an adequate level after sulfation.The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium‐based SCR catalysts with superior SO2 durability.展开更多
基金financially supported by the Technion V.P.for Research Fund(No.2023320)。
文摘The monomolecular surface layer of acceptor doped CeO_(2) may become neutral and metallic or charged and semiconducting.This is revealed in the theoretical analysis of the oxygen pressure dependence of the surface defects concentration in acceptor doped ceria with two different dopant types and operated under different oxygen pressures.Recently published experimental data for highly reduced Sm0.2Ce0.8O1.9-x(SDC)containing a fixed valence dopant Sm3+are very different from those published for Pr0.1Ce0.9O_(2)-x(PCO) with the variable valence dopant Pr4+/Pr3+being reduced under milder conditions.The theoretical analysis of these experimental results fits very well the experimental results of SDC and PCO.It leads to the following predictions:the highly reduced surface of SDC is metallic and neutral,the metallic surface electron density of state is gs=0.9×10^(38)J-1·m^(-2)(1.4×1015eV^(-1)·cm^(-2)),the electron effective mass is meff,s=3.3me,and the phase diagram of the reduced surface has theα(fcc)structure as in the bulk.In PCO a double layer is predicted to be formed between the surface and the bulk with the surface being negatively charged and semiconducting.The surface of PCO maintains high Pr^(3+) defect concentration as well as relative high oxygen vacancy concentration at oxygen pressures higher than in the bulk.The reasons for the difference between a metallic and semiconducting surface layer of acceptor doped CeO_(2) are reviewed,as well as the key theoretical considerations applied in coping with this problem.For that we make use of the experimental data and theoretical analysis available for acceptor doped ceria.
文摘The direct synthesis of dimethyl carbonate(DMC)from CO_(2)and methanol has attracted much attention as an environmentally benign and alternative route for conventional routes.Herein,a series of cerium oxide catalysts with various textural features and surface properties were prepared by the one-pot synthesis method for the direct DMC synthesis from CO_(2)and methanol,and the structure-performance relationship was investigated in detail.Characterization results revealed that both of surface acid-base properties and the oxygen vacancies contents decreased with the rising crystallinity at increasingly higher calcination temperature accompanied by an unexpectedly volcano-shaped trend of DMC yield observed on the catalysts.In situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies indicated that the adsorption rate of methanol is slower than that of CO_(2)and the methanol activation state largely influences the formation of key intermediate.Although the enhanced surface acidity-basicity and oxygen vacancies brought by low-temperature calcination could facilitate the activation of CO_(2),the presence of excess strongly basic sites on low-crystallinity sample was detrimental to DMC synthesis due to the preferred formation of unreactive mono/polydentate carbonates as well as the further impediment of methanol activation.Moreover,with the use of 2-cyanopyridine as a dehydration reagent,the DMC synthesis was found to be both influenced by the promotion from the rapid in situ removal of water and the inhibition from the competitive adsorption of hydration products on the same active sites.
基金This work was supported by the National Natural Science Foundation of China (51973157,61904123)the Tianjin Natural Science Foundation (18JCQNJC02900)+3 种基金the Special Grade of the Financial Support from the China Postdoctoral Science Foundation (2020T130469)the Sci-ence and Technology Plans of Tianjin (19PTSYJC00010)the Science&Technol-ogy Development Fund of Tianjin Education Commission for Higher Education (2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities.
基金This work was financially supported by the National Key R&D Program of China(No.2017YFA0205004)the Anhui Initiative in Quantum Information Technologies(AHY090000)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36020200)the National Natural Science Foundation of China(No.11620101003,No.11904349,and No.21972129).
基金supported by the National Natural Science Foundation of China(Nos.21406164,21466035 and 51203111)the National Basic Research Program of China("973"Program,Nos.2012CB720100 and 2014CB239300)
文摘Response surface methodology(RSM)was employed to optimize the control parameters of TiO_(2)/graphene with exposed{001}facets during synthesis,and its enhanced photocatalytic activities were evaluated in the photodegradation of toluene.Experimental results were in good agreement with the predicted results obtained using RSM with a correlation coefficient(R^(2))of 0.9345.When 22.06 mg of graphite oxide(GO)and 2.09 mL of hydrofluoric acid(HF)were added and a hydrothermal time of 28 h was used,a maximum efficiency in the degradation of toluene was achieved.X-ray diffraction(XRD),transmission electron microscopy(TEM),and scanning electron microscopy(SEM)were employed to characterize the obtained hybrid photocatalyst.The electron transferred between Ti and C retarded the combination of electron–hole pairs and hastened the transferring of electrons,which enhanced the photocatalytic activity.
文摘The CeO_2-ZrO_2 solid solutions were prepared by a reverse microemulsion method. The effect of preparation parameters on the surface area and crystalline form of the solid solutions were studied by the BET surface area and XRD analysis. The studies indicate that the separation of the microemulsion phase during the preparation procedure can decrease the specific surface area of sample, adding hydrogen peroxide in the matrix solution can increase the specific surface area and stability of sample. The surface area of sample calcined at 550 ℃ for 5 h is 149 m^2·g^(-1), and that calcined at 900 ℃ for 6 h is 88 m^2·g^(-1). The sample with tetragonal symmetry Ce_(0.5)Zr_(0.5)O_2 phase has a higher stability.
文摘采用RHEED与STM技术对GaAs(001)-(2×6)表面重构下的表面形貌进行研究,研究发现GaAs(001)-(2×6)重构表面是GaAs(001)-β2(2×4)重构表面经530℃,1.33μPa As BEP退火获得,在(2×6)重构下的GaAs(001)表面形貌已经进入表面存在系列单层岛和坑覆盖的无序平坦状态。为了进一步确定(2×6)重构的原胞结构,采用球棍模型对其原胞结构进行模拟,提出新的As表面覆盖率计算方法、结合STM图片分析对球棍模型进行验证和筛选,首次在实验上证实(2×6)重构原胞中存在2个As Dimers和2个Ga Dimers,并以此重构原胞结构构建理论下的(2×6)重构表面,获得结果与STM图片高度吻合。
基金the Science and Technology Department of Zhejiang Province(No.2006C21072)
文摘By means of the wet chemical surface modification,the surface of CeO_2 was modified by vinyltrimethoxysilane (VTMS).Infrared spectroscopy was used to investigate the structure of the modified CeO_2 and the result showed that VTMS has been attached onto the surface of CeO_2.Effect of VTMS concentration on the active index of the modified CeO_2 was also studied,and the result indicated that the active index of the modified CeO_2 increases with the increase of VTMS concentration and the optimal concentration o...
文摘采用简单团簇模型结合密度泛函理论研究了CH3OH在Ga-rich Ga As(001)-(4×2)表面上的吸附与解离过程.计算结果表明,CH3OH在Ga-rich Ga As(001)-(4×2)表面上首先会形成两种化学吸附状态,然后CH3OH经解离生成CH3O自由基和H原子吸附在表面不同位置上.通过比较各个吸附解离路径,发现解离后的H原子相对更容易吸附在位于表面第二层紧邻的As原子上.
文摘Cerium‐based catalysts are very attractive for the catalytic abatement of nitrogen oxides(NOx)emitted from stationary sources.However,the main challenge is still achieving satisfactory catalytic activity in the low‐temperature range and tolerance to SO2 poisoning.In the present work,two series of Mo‐modified CeO_(2)catalysts were respectively obtained through a wet impregnation method(Mo‐CeO_(2))and a co‐precipitation method(MoCe‐cp),and the roles of the Mo species were systematically investigated.Activity tests showed that the Mo‐CeO_(2)catalyst displayed much higher NO conversion at low temperature and anti‐SO2 ability than MoCe‐cp.The optimal Mo‐CeO_(2)catalyst displayed over 80%NO elimination efficiency even at 150°C and remarkable SO2 resistance at 250°C(nearly no activity loss after 40 h test).The characterization results indicated that the introduced Mo species were highly dispersed on the Mo‐CeO_(2)catalyst surface,thereby providing more Brønsted acid sites and inhibiting the formation of stable adsorbed NOx species.These factors synergistically promote the selective catalytic reduction(SCR)reaction in accordance with the Eley‐Rideal(E‐R)reaction path on the Mo‐CeO_(2)catalyst.Additionally,the molybdenum surface could protect CeO_(2)from SO2 poisoning;thus,the reducibility of the Mo‐CeO_(2)catalyst declined slightly to an adequate level after sulfation.The results in this work indicate that surface modification with Mo species may be a simple method of developing highly efficient cerium‐based SCR catalysts with superior SO2 durability.