High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising stra...High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.展开更多
Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method fo...Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline(TC) degradation under simulated solar light illumination. With a calcination temperature ranging from400 to 800 ℃, the as-prepared CeO_(2) hollow structure annealed at 600 ℃(C_(600)) exhibited the best degradation performance with a degradation rate constant of0.066 min-1, which was about six and five times higher than those of the uncalcined sample(C_(0)) and the sample calcined at 800 ℃(C_(800)), respectively. Moreover, sample C_(600)was also superior to the CeO_(2) solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion(·O_(2)^(-)) radical and hole(h^(+)) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO_(2) hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO_(2). The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation.展开更多
The development of direct methanol fuel cells(DMFCs) is partially limited by the poor kinetics of methanol oxidation reaction(MOR) at the anode side.It was reported that the interaction between Pt and CeO_(2) enhances...The development of direct methanol fuel cells(DMFCs) is partially limited by the poor kinetics of methanol oxidation reaction(MOR) at the anode side.It was reported that the interaction between Pt and CeO_(2) enhances the electrocatalytic performance of Pt catalyst for MOR.In this work,a hybrid material(CeO_(2)-C) composed of CeO_(2) and carbon was successfully prepared by a simple hydrothermal method followed by calcination in inert atmosphere.The hierarchically porous nanostructure and especially good electronic conductivity of CeO_(2)-C make it an excellent support for Pt particles for application in electrocatalytic process.TEM investigation reveals that triple-phase interface of Pt,carbon and CeO_(2) forms in Pt/CeO_(2)-C catalyst.Performance of the as-prepared catalyst for MOR was studied in alkaline medium.The Pt/CeO_(2)-C catalyst shows superior catalytic performance for MOR compared with Pt/CeO_(2) and the physical mixture of Pt/CeO_(2) and acetylene black(Pt/CeO_(2)+C).The significantly improved performance can be attributed to the synergetic effect between Pt particles and CeO_(2)-C support,and the better conductivity of CeO_(2)-C.This study provides a possible method to expand the application potential of CeO_(2) materials in MOR,and may also be used in other electrocatalytic process.展开更多
基金This work is supported partially by the project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos.LAPS21004,LAPS202114)National Natural Science Foundation of China(Nos.52272200,51972110,52102245 and 52072121)+6 种基金Beijing Science and Technology Project(No.Z211100004621010)Beijing Natural Science Foundation(Nos.2222076,2222077)Hebei Natural Science Foundation(No.E2022502022)Huaneng Group Headquarters Science and Technology Project(No.HNKJ20-H88)2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,China Postdoctoral Science Foundation(No.2022M721129)the Fundamental Research Funds for the Central Universities(Nos.2022MS030,2021MS028,2020MS023,2020MS028)the NCEPU“Double First-Class”Program.This research was also supported by Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(No.2021H1D3A2A01100019).
文摘High-performance and low-cost gas sensors are highly desirable and involved in industrial production and environmental detection.The combination of highly conductive MXene and metal oxide materials is a promising strategy to further improve the sensing performances.In this study,the hollow SnO_(2)nanospheres and few-layer MXene are assembled rationally via facile electrostatic synthesis processes,then the SnO_(2)/Ti_(3)C_(2)T_(x)nanocomposites were obtained.Compared with that based on either pure SnO_(2)nanoparticles or hollow nanospheres of SnO_(2),the SnO_(2)/Ti_(3)C_(2)T_(x)composite-based sensor exhibits much better sensing performances such as higher response(36.979),faster response time(5 s),and much improved selectivity as well as stability(15 days)to 100ppm C2H5OH at low working temperature(200°C).The improved sensing performances are mainly attributed to the large specific surface area and significantly increased oxygen vacancy concentration,which provides a large number of active sites for gas adsorption and surface catalytic reaction.In addition,the heterostructure interfaces between SnO_(2)hollow spheres and MXene layers are beneficial to gas sensing behaviors due to the synergistic effect.
基金financially supported by the National Natural Science Foundation of China(Nos.51961135303,51932007,21871217,U1905215 and U1705251)the Innovative Research Funds of Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(No.XHD2020-001)+2 种基金the National Postdoctoral Program for Innovative Talents(No.BX20200261)China Postdoctoral Science Foundation(No.2020M682501)Dean Research Fund(Nos.04530 and 04554)。
文摘Recently, researchers have focused on designing and fabricating highly efficient catalysts for photocatalytic organic pollutant removal. Herein, CeO_(2) hollow spheres were prepared through a simple template method followed by calcination at different temperatures for the tetracycline(TC) degradation under simulated solar light illumination. With a calcination temperature ranging from400 to 800 ℃, the as-prepared CeO_(2) hollow structure annealed at 600 ℃(C_(600)) exhibited the best degradation performance with a degradation rate constant of0.066 min-1, which was about six and five times higher than those of the uncalcined sample(C_(0)) and the sample calcined at 800 ℃(C_(800)), respectively. Moreover, sample C_(600)was also superior to the CeO_(2) solid particle photocatalyst. The characterisation results showed that the improved photocatalytic performance was mainly ascribed to the synergistic effect of large specific surface areas, high crystallisation and excellent light scattering ability. Furthermore, the results of active species trapping experiments demonstrated that the superoxide anion(·O_(2)^(-)) radical and hole(h^(+)) played dominant roles in TC degradation. Subsequently, the possible TC degradation pathways and photocatalytic mechanism of CeO_(2) hollow spheres were proposed on the basis of high-performance liquid chromatography–mass spectrometry analysis, main active species and band edge positions of CeO_(2). The results of this study provide a basis for designing and exploring hollow structure catalysts for energy conversion and environmental remediation.
基金Project supported by the China Postdoctoral Science Foundation(2018M633136)Industry and Information Technology Bureau of Shenzhen Municipality(201901171518)。
文摘The development of direct methanol fuel cells(DMFCs) is partially limited by the poor kinetics of methanol oxidation reaction(MOR) at the anode side.It was reported that the interaction between Pt and CeO_(2) enhances the electrocatalytic performance of Pt catalyst for MOR.In this work,a hybrid material(CeO_(2)-C) composed of CeO_(2) and carbon was successfully prepared by a simple hydrothermal method followed by calcination in inert atmosphere.The hierarchically porous nanostructure and especially good electronic conductivity of CeO_(2)-C make it an excellent support for Pt particles for application in electrocatalytic process.TEM investigation reveals that triple-phase interface of Pt,carbon and CeO_(2) forms in Pt/CeO_(2)-C catalyst.Performance of the as-prepared catalyst for MOR was studied in alkaline medium.The Pt/CeO_(2)-C catalyst shows superior catalytic performance for MOR compared with Pt/CeO_(2) and the physical mixture of Pt/CeO_(2) and acetylene black(Pt/CeO_(2)+C).The significantly improved performance can be attributed to the synergetic effect between Pt particles and CeO_(2)-C support,and the better conductivity of CeO_(2)-C.This study provides a possible method to expand the application potential of CeO_(2) materials in MOR,and may also be used in other electrocatalytic process.