The effect of cerium dioxide(CeO_2)as an additive on the structure and properties of a melting type coating has been studied by means of microhardness measurement,scanning electron microscopy and thermal analysis. The...The effect of cerium dioxide(CeO_2)as an additive on the structure and properties of a melting type coating has been studied by means of microhardness measurement,scanning electron microscopy and thermal analysis. The results show that cerium dioxide can modify the microstructure and tribological properties of the coating. Model LIC-23 composite coating which contains CeO_2 performs well as a self-lubricating coating in hydrochloric acid solution.展开更多
The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of mart...The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of martensite occurs,as well as the refined grains and the more eutectic and compounds with regular morphology are dis- tributed.While the FeBSi coating free from CeO_2 is a sharp constrast in microstructure.展开更多
A simple electrodeposition technique was used to prepare Ni-CeOnanorods composite coating(Ni-CeONRs) using Watt’s nickel plating bath containing CeOnanorods(NRs) as the reinforcement phase under optimized process con...A simple electrodeposition technique was used to prepare Ni-CeOnanorods composite coating(Ni-CeONRs) using Watt’s nickel plating bath containing CeOnanorods(NRs) as the reinforcement phase under optimized process conditions. The X-ray diffraction analysis(XRD) was used for the structural analysis of Ni-CeONRs composite coatings and their average crystalline size is ~22 nm for pure Ni and ~18 nm,respectively. The crystalline structure is fcc for the Ni-CeOnanocomposite coatings. The surface morphology of the electrodeposited Ni-CeONRs composite coatings was analyzed by scanning electron microscopy(SEM). Microhardness of pure Ni and Ni-CeONRs composite coatings are found to be 253 HV and 824 HV, respectively. The inclusion of CeONRs increases the microhardness of Ni-CeONRs composite coatings. The corrosion resistance behavior of Ni-CeONRs composite coating was evaluated by Tafel polarization and AC impedance methods. It is revealed that CeONRs reinforced Ni matrix shows higher microhardness and corrosion resistance than existing reported electrodeposited pure Ni and CeOnanoparticles reinforced Ni coatings.展开更多
基金This is supported by the Youth Research Fund of Chinese Academy of Sciences
文摘The effect of cerium dioxide(CeO_2)as an additive on the structure and properties of a melting type coating has been studied by means of microhardness measurement,scanning electron microscopy and thermal analysis. The results show that cerium dioxide can modify the microstructure and tribological properties of the coating. Model LIC-23 composite coating which contains CeO_2 performs well as a self-lubricating coating in hydrochloric acid solution.
文摘The hardness and wear resistance of sprayed FeBSi coating after laser remelting were much improved by addition of 8 wt-% CeO_2.Microstructural observation on the FeBSi+CeO_2 coating revealed that the formation of martensite occurs,as well as the refined grains and the more eutectic and compounds with regular morphology are dis- tributed.While the FeBSi coating free from CeO_2 is a sharp constrast in microstructure.
基金Project supported by UGC-DAE Consortium for Scientific Research,Indore-452 017,India(CSR-KN/CRS-47/2013-14/647)
文摘A simple electrodeposition technique was used to prepare Ni-CeOnanorods composite coating(Ni-CeONRs) using Watt’s nickel plating bath containing CeOnanorods(NRs) as the reinforcement phase under optimized process conditions. The X-ray diffraction analysis(XRD) was used for the structural analysis of Ni-CeONRs composite coatings and their average crystalline size is ~22 nm for pure Ni and ~18 nm,respectively. The crystalline structure is fcc for the Ni-CeOnanocomposite coatings. The surface morphology of the electrodeposited Ni-CeONRs composite coatings was analyzed by scanning electron microscopy(SEM). Microhardness of pure Ni and Ni-CeONRs composite coatings are found to be 253 HV and 824 HV, respectively. The inclusion of CeONRs increases the microhardness of Ni-CeONRs composite coatings. The corrosion resistance behavior of Ni-CeONRs composite coating was evaluated by Tafel polarization and AC impedance methods. It is revealed that CeONRs reinforced Ni matrix shows higher microhardness and corrosion resistance than existing reported electrodeposited pure Ni and CeOnanoparticles reinforced Ni coatings.