Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary...Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.展开更多
Cancer nanomedicines require different,even opposite,properties to voyage the cascade drug delivery process involving a series of biological barriers.Currentlyapproved nanomedicines can only alleviate adverse effects ...Cancer nanomedicines require different,even opposite,properties to voyage the cascade drug delivery process involving a series of biological barriers.Currentlyapproved nanomedicines can only alleviate adverse effects but cannot improve patient survival because they fail to meet all the requirements.Therefore,nanocarriers with synchronized functions are highly requisite to capacitate efficient drug delivery and enhanced therapeutic efficacies.This perspective article summarizes recent advances in the two main strategies for nanomedicine design,the All-in-One approach(integration of all the functions in one system)and the One-for-All approach(one functional group with proper affinity enables all the functions),and presents our views on future nanomedicine development.展开更多
基金Supported by the Major State Basic Research Development Program (No.G1990 5 4 30 5 )
文摘Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.
基金supported by the National Key Research and Development Program(2021YFA1201200)the National Natural Science Foundation of China(51833008 and 52203193)the Zhejiang Provincial Key Research and Development Program(2020C01123).
文摘Cancer nanomedicines require different,even opposite,properties to voyage the cascade drug delivery process involving a series of biological barriers.Currentlyapproved nanomedicines can only alleviate adverse effects but cannot improve patient survival because they fail to meet all the requirements.Therefore,nanocarriers with synchronized functions are highly requisite to capacitate efficient drug delivery and enhanced therapeutic efficacies.This perspective article summarizes recent advances in the two main strategies for nanomedicine design,the All-in-One approach(integration of all the functions in one system)and the One-for-All approach(one functional group with proper affinity enables all the functions),and presents our views on future nanomedicine development.