期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
Collaborative R&D between multicrystalline silicon ingots and battery efficiency improvement--effect of shadow area in multicrystalline silicon ingots on cell efficiency 被引量:1
1
作者 Xiang Zhang Chunlai Huang +1 位作者 Lei Wang Min Zhou 《Journal of Semiconductors》 EI CAS CSCD 2018年第8期32-35,共4页
We characterized strip-like shadows in cast multicrystalline silicon(mc-Si) ingots. Blocks and wafers were analyzed using scanning infrared microscopy, photoluminescence spectroscopy, laser scanning confocal microscop... We characterized strip-like shadows in cast multicrystalline silicon(mc-Si) ingots. Blocks and wafers were analyzed using scanning infrared microscopy, photoluminescence spectroscopy, laser scanning confocal microscopy, field-emission scanning electron microscopy, X-ray energy-dispersive spectrometry, and microwave photoconductivity decay technique. The effect on solar cell performance is discussed. The results show that the non-microcrystalline shadow region in Si ingots consists of precipitates of Fe, O, and C. The size of these Fe–O–C precipitates found at the shadow region is25 μm. Fe–O–C impurities can slightly reduce the minority carrier lifetime of the wafers while severely decrease in shunt resistance, leading to the increase in reverse current of the solar cells and degradation in cell efficiency. 展开更多
关键词 silicon SHADOW iron–oxygen–carbon precipitates minority carrier lifetime cell efficiency
原文传递
Enhanced Efficiency of Metamorphic Triple Junction Solar Cells for Space Applications 被引量:1
2
作者 王笃祥 宋明辉 +5 位作者 毕京锋 陈文浚 李森林 刘冠洲 李明阳 吴超瑜 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第6期126-130,共5页
Metamorphic In0.55Ga0.45P/In0.06Ga0.94As/Ge triple-junction (3J-MM) solar cells are grown on Ge (100) sub- strates via metal organic chemical vapor deposition. Epi-structural analyses such as high resolution x-ray... Metamorphic In0.55Ga0.45P/In0.06Ga0.94As/Ge triple-junction (3J-MM) solar cells are grown on Ge (100) sub- strates via metal organic chemical vapor deposition. Epi-structural analyses such as high resolution x-ray diffrac- tion, photoluminence, cathodoluminescence and HRTEM are employed and the results show that the high crystal quality of 3J-MM solar cells is obtained with low threading dislocation density of graded buffer (an average value of 6.8× 10^4/cm2). Benefitting from the optimized bandgap combination, under one sun, AM0 spectrum, 25℃ conditions, the conversion efficiency is achieved about 32%, 5% higher compared with the lattice-matched In0.49Ga0.51P/In0.01Ga0.99As/Ge triple junction (3J-LM) solar cell. Under 1-MeV electron irradiation test, the degradation of the EQE and I-V characteristics of 3J-MM solar cells is at the same level as the 33-LM solar cell. The end-of-life efficiency is -27.1%. Therefore, the metamorphic triple-junction solar cell may be a promising candidate for next-generation space multi-junction solar cells. 展开更多
关键词 GA MM As Enhanced efficiency of Metamorphic Triple Junction Solar cells for Space Applications
下载PDF
InxGa1-xN/GaN Multiple Quantum Well Solar Cells with Conversion Efficiency of 3.77%
3
作者 刘侍明 肖红领 +5 位作者 王权 闫俊达 占香蜜 巩稼民 王晓亮 王占国 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期185-188,共4页
We report on fabrication and photovoltaic characteristics of InxGa1-xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high- ... We report on fabrication and photovoltaic characteristics of InxGa1-xN/GaN multiple quantum well solar cells with different indium compositions and barrier thicknesses. The as-grown samples are characterized by high- resolution x-ray diffraction and reciprocal space mapping. The results show that the sample with a thick barrier thickness (lO.Onm) and high indium composition (0.23) has better crystalline quality. In addition, the dark current density-voltage (J-V) measurement of this device shows a significant decrease of leakage current, which leads to high open-circuit voltage Vow. Through the J-V characteristics under an Air Mass 1.5 Global (AM 1.5 G) illumination, this device exhibits a Voc of 1.89 V, a short-circuit current density Ysc of 3.92mA/cm2 and a fill factor of 50.96%. As a result, the conversion efficiency (77) is enhanced to be 3.77% in comparison with other devices. 展开更多
关键词 GAN In_xGa x)N/GaN Multiple Quantum Well Solar cells with Conversion efficiency of 3.77
下载PDF
GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar Cell Grown by Metal Organic Chemical Vapor Deposition with High Efficiency
4
作者 张杨 王青 +5 位作者 张小宾 刘振奇 陈丙振 黄珊珊 彭娜 王智勇 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第10期167-171,共5页
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the... We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum. 展开更多
关键词 by on it of GaInP/GaInAs/GaInNAs/Ge Four-Junction Solar cell Grown by Metal Organic Chemical Vapor Deposition with High efficiency is THAN Ge GaAs with cell that
下载PDF
Mechanical robust and self-healing flexible perovskite solar cells with efficiency exceeding 23%
5
作者 Yaohua Wang Ruikun Cao +8 位作者 Yuanyuan Meng Bin Han Ruijia Tian Xiaoyi Lu Zhenhua Song Shuncheng Yang Congda Lu Chang Liu Ziyi Ge 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第8期2670-2678,共9页
Flexible perovskite solar cells(f-PSCs) have experienced rapid advancements due to the light-weight, flexibility, and solution processability of the perovskite materials, which prompted the power conversion efficiency... Flexible perovskite solar cells(f-PSCs) have experienced rapid advancements due to the light-weight, flexibility, and solution processability of the perovskite materials, which prompted the power conversion efficiency(PCE) to 24.08%. However, f-PSCs still face challenges in terms of mechanical and environmental stability. This is primarily due to their inherent brittleness, the presence of residual tensile strain, and the high density of defects along the boundaries of perovskite grains. To this end, we carefully developed a cross-linkable elastomers 3-[(3-acrylamidopropyl)dimethylammonium] propanoate(ADP) with electrostatic dynamic bond, which could be in-situ cross-linked and coordinate with [Pb I6]4-to regulate the crystallization process of perovskite. The cross-linked elastomers attached to the perovskite grain boundaries could release the remaining tensile strains and mechanical stresses, leading to enhanced stability and flexibility of the f-PSCs. More importantly, the electrostatic interaction between positive and negative groups of cross-linked elastomers and hydrogen bond formation between N–H and C=O accelerate the cross-linking of ADP, endowing the flexible perovskite films with self-healing ability under mild treating conditions(60 °C for 30 min). As a result, the device achieves a remarkable PCE of 23.53%(certified 23.16%). Additionally, the device exhibits impressive mechanical sustainability and durability, retaining over 90% of initial PCE even after undergoing8,000 bending cycles. 展开更多
关键词 Mechanical robust and self-healing flexible perovskite solar cells with efficiency exceeding 23
原文传递
Progress in hole-transporting materials for perovskite solar cells 被引量:3
6
作者 Xichuan Yang Haoxin Wang +2 位作者 Bin Cai Ze Yu Licheng Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期650-672,共23页
In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficien... In recent years the photovoltaic community has witnessed the unprecedented development of perovskite solar cells(PSCs) as they have taken the lead in emergent photovoltaic technologies. The power conversion efficiency of this new class of solar cells has been increased to a point where they are beginning to compete with more established technologies. Although PSCs have evolved a variety of structures, the use of hole-transporting materials(HTMs) remains indispensable. Here, an overview of the various types of available HTMs is presented. This includes organic and inorganic HTMs and is presented alongside recent progress in associated aspects of PSCs, including device architectures and fabrication techniques to produce high-quality perovskite films. The structure, electrochemistry, and physical properties of a variety of HTMs are discussed, highlighting considerations for those designing new HTMs. Finally, an outlook is presented to provide more concrete direction for the development and optimization of HTMs for highefficiency PSCs. 展开更多
关键词 Perovskite solar cells Efficient charge extraction Hole transporting materials Recombination losses
下载PDF
A partition-type tubular scaffold loaded with PDGF-releasing microspheres for spinal cord repair facilitates the directional migration and growth of cells 被引量:1
7
作者 Xue Chen Mei-Ling Xu +7 位作者 Cheng-Niu Wang Lu-Zhong Zhang Ya-Hong Zhao Chang-Lai Zhu Ying Chen Jian Wu Yu-Min Yang Xiao-Dong Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1231-1240,共10页
The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been... The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ.Platelet-derived growth factor(PDGF) has been shown to promote the migration of bone marrow stromal cells;however,cytokines need to be released at a steady rate to maintain a stable concentration in vivo.Therefore,new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization,proliferation and differentiation.In the present study,a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres(PDGF-MSs).The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity,biocompatibility,and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells(MUSE-NPCs).We found that pre-freezing for 2 hours at-20°C significantly increased the yield of partition-type tubular scaffolds,and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs.The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release.The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells.These findings indicate that the combination of a partition-type tubular scaffold,PDGF-MSs and MUSENPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts. 展开更多
关键词 nerve regeneration partition-type tubular scaffold microspheres platelet-derived growth factor muse cells neural precursor cells chitosan encapsulation efficiency bone marrow spinal cord injury tissue engineering neural regeneration
下载PDF
The effect of transition metal ions (M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells 被引量:2
8
作者 Kezhong Wu Lei Chen +2 位作者 Weizhen Cui Bei Ruan Mingxing Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期671-675,共5页
The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investi... The effect of transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)) on the chemical synthesis of polyaniline(PANI) used as a platinum-free counter electrode(CE) in dye-sensitized solar cells(DSSCs) was investigated.PANI was synthesized by co-polymerization of aniline in the presence of different transition metal ions by using potassium dichromate in acidic medium. It was found that the ion doping of PANI showed a certain catalytic activity for the regeneration of traditional iodide/triiodide(I^-/I_3^-) redox couples. The power conversion efficiency(η) of PANI CEs doped with Mn^(2+),Ni^(2+),Co^(2+) (4.41%, 2.36% and 2.10%, respectively) were higher than 1.94%, the value measured for PANI CE without doping. Doping with Cu^(2+)decreased the power conversion efficiency of PANI CE(PANI-Cu^(2+) η = 1.41%). The electrical properties of the PANI, PANI-Ni^(2+), PANI-Co^(2+),PANI-Mn^(2+) and PANI-Cu^(2+) were studied by cyclic voltammetry(CV), impedance(EIS), and Tafel polarization curve. The experimental results confirmed that PANI was affected by the doping of different transition metal ions(M^(2+)=Mn^(2+),Ni^(2+),Co^(2+),Cu^(2+)). These results indicate a potential application of ion doped PANI as counter electrode in cost-effective DSSCs. 展开更多
关键词 Dye-sensitized solar cell Counter electrode Polyaniline Transition metal ion Power conversion efficiency
下载PDF
Titanylphthalocyanine as hole transporting material for perovskite solar cells
9
作者 Mengna Sun Shirong Wang +2 位作者 Yin Xiao Zhihao Song Xianggao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期756-761,共6页
Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. Ti... Titanylphthalocyanine (TiOPc) as hole transporting material (HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. TiOPc as HTM plays an important role in increasing the power conversion efficiency (PCE) by minimizing recombi- nation losses at the perovskite/Au interface because TiOPc as HTM can extract photogenerated holes from the perovskite and then transport quickly these charges to the back metal electrode. In the research, the β-TiOPc gives a higher PCE than α-TiOPc for the devices due to sufficient transfer dynamics, The β-TiOPc was applied in perovskite solar cells without clopping to afford an impressive PCE of 5.05% under AM 1.5G illumination at the thickness of 40 nm which is competitive with spiro-OMeTAD at the same condition. The present work suggests a guideline for optimizing the photovoltaic properties ofperovskite solar cells using the TiOPc as the HTM. 展开更多
关键词 Perovskite Solar cell Titanylphthalocyanine Hole transporting material Power conversion efficiency
下载PDF
A safe and efficient mdethod for the collection of peripheral blood stem cells (PBSC) of young children
10
《中国输血杂志》 CAS CSCD 2001年第S1期412-,共1页
关键词 PBSC STEM of young children A safe and efficient mdethod for the collection of peripheral blood stem cells
下载PDF
Energy-Efficient Beamforming for Two-Tier Massive MIMO Downlink 被引量:3
11
作者 XU Guozhen LIU An +2 位作者 JIANG Wei XIANG Haige LUO Wu 《China Communications》 SCIE CSCD 2015年第10期64-75,共12页
Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network a... Heterogeneous networks(HetNets)consisting of macro cells with very large antenna arrays and a secondary tier of small cells with a few antennas each can well tackle the contradiction of large coverage of the network and high data rate at the hot spots.However,it is not permissible to assign orthogonal pilot sequences for all the supported users due to the large number.Hence,we propose a pilot reduction scheme based on the heterogeneous system configurations and the unique topology of this HetNet.The reusing of pilot sequences causes the presence of the contaminated channel state information(CSI) and results in receivers' Quality of Service(QoS) outage.With the contaminated CSI,we provide an energy-efficient beamforming based on minimizing the total power consumption while keeping the QoS constraints satisfied and restricting the QoS outage probability below a given specification.By applying the approach of Bernstein approximation and semi-definite relaxation,we transform the original intractable chance constrained program to a convex problem conservatively.Numerical results show that the average power consumption of the proposed beamforming for our pilot reduction scheme is close to that of the perfect CSI case.Since our scheme will greatly compress the length of pilot sequence especially for those highly densified network with large number of small cells,it will be crucially helpful to put such two-tier massive multiple-input and multiple-output(MIMO) systems into practice. 展开更多
关键词 massive MIMO small cell Het-Net energy efficiency
下载PDF
Over 9% efficiency achieved for all-polymer solar cells processed by a green solvent 被引量:2
12
作者 Guillermo C.Bazan 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第8期1109-1110,共2页
Bulk-heterojunction polymer solar cells (PSCs) have at- tracted considerable attention owning to their potential for fabricating flexible, light-weight and large area solar cell panels via high-throughput roll-to-ro... Bulk-heterojunction polymer solar cells (PSCs) have at- tracted considerable attention owning to their potential for fabricating flexible, light-weight and large area solar cell panels via high-throughput roll-to-roll technologies. Compared with conventional PSCs comprising small mol- ecule acceptors, such as fullerenes, all-polymer solar cells (all-PSCs) containing blends of p-type/n-type polymers in the photoactive layer provide advantages including easily tunable absorption band, enhanced absorption coefficient, 展开更多
关键词 PSCs on in IS for efficiency achieved for all-polymer solar cells processed by a green solvent Over 9 by
原文传递
Synergistic effect of fluorination on both donor and acceptor materials for high performance non-fullerene polymer solar cells with 13.5% efficiency 被引量:21
13
作者 Qunping Fan Wenyan Su +7 位作者 Yan Wang Bing Guo Yufeng Jiang Xia Guo Feng Liu Thomas P.Russell Maojie Zhang Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第5期531-537,共7页
A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were deve... A high performance polymer solar cells(PSCs) based on polymer donor PM6 containing fluorinated thienyl benzodithiophene unit and n-type organic semiconductor acceptor IT-4 F containing fluorinated end-groups were developed. In addition to complementary absorption spectra(300–830 nm) with IT-4 F, the PM6 also has a deep HOMO(the highest occupied molecular) level(-5.50 e V), which will lower the open-circuit voltage(V_(oc)) sacrifice and reduce the E_(loss) of the IT-4 F-based PSCs. Moreover, the strong crystallinity of PM6 is beneficial to form favorable blend morphology and hence to suppress recombination. As a result, in comparison with the PSCs based on a non-fluorinated D/A pair of PBDB-T:ITIC with a medium PCE of 11.2%, the PM6:IT-4 Fbased PSCs yielded an impressive PCE of 13.5% due to the synergistic effect of fluorination on both donor and acceptor, which is among the highest values recorded in the literatures for PSCs to date. Furthermore, a PCE of 12.2% was remained with the active layer thickness of up to 285 nm and a high PCE of 11.4% was also obtained with a large device area of 1 cm^2. In addition, the devices also showed good storage, thermal and illumination stabilities with respect to the efficiency. These results indicate that fluorination is an effective strategy to improve the photovoltaic performance of materials, as well as the both fluorinated donor and acceptor pair-PM6:IT-4 F is an ideal candidate for the large scale roll-to-roll production of efficient PSCs in the future. 展开更多
关键词 polymer solar cells fluorine substitution non-fullerene wide bandgap conjugated polymer power conversion efficiency
原文传递
Layered-stacking of titania films for solar energy conversion:Toward tailored optical,electronic and photovoltaic performance 被引量:1
14
作者 Wu-Qiang Wu Jin-Feng Liao Dai-Bin Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期690-702,共13页
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver... Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process. 展开更多
关键词 TiO2 Charge transport Light scattering Power conversion efficiency Solar cells
下载PDF
A chlorinated non-fullerene acceptor for efficient polymer solar cells 被引量:5
15
作者 Mei Luo Can Zhu +4 位作者 Jun Yuan Liuyang Zhou M.L.Keshtov D.Yu Godovsky Yingping Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2343-2346,共4页
Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize t... Improving the performance and reducing the manufacturing costs are the main directions for the development of organic solar cells in the future.Here,the strategy that uses chemical structure modification to optimize the photoelectric properties is reported.A new narrow bandgap(1.30 eV)chlorinated non-fullerene electron acceptor(Y15),based on benzo[d][1,2,3] triazole with two 3-undecylthieno[2’,3’:4,5] thieno[3,2-b] pyrrole fused-7-heterocyclic ring,with absorption edge extending to the near-infrared(NIR) region,namely A-DA’D-A type structure,is designed and synthesized.Its electrochemical and optoelectronic properties are systematically investigated.Benefitting from its NIR light harvesting,the fabricated photovoltaic devices based on Y15 deliver a high power conversion efficiency(PCE) of 14.13%,when blending with a wide bandgap polymer donor PM6.Our results show that the A-DA’D-A type molecular design and application of near-infrared electron acceptors have the potential to further improve the PCE of polymer solar cells(PSCs). 展开更多
关键词 Electron acceptor Y15 Chlorinated Non-fullerene electron acceptors Efficient polymer solar cells Narrow bandgap
原文传递
Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries 被引量:9
16
作者 Jia-Qi Huang Pei-Yan Zhai +2 位作者 Hong-Jie Peng Wan-Cheng Zhu Qiang Zhang 《Science Bulletin》 SCIE EI CAS CSCD 2017年第18期1267-1274,共8页
Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active ma... Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demon- strated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (AI) foil current collectors. The interracial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113 mAh g-1 at 0.5 C, which is -300 mAh g-1 higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the AI/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O2 batteries, fuel cells, and flow batteries). 展开更多
关键词 Lithium-sulfur battery Nanostructured current collectors Polysulfides Energy efficiency Pouch cell
原文传递
Constructing robust all-inorganic contacts enable stable perovskite solar cells with efficiencies over 20% 被引量:1
17
作者 Zhongwei Wu Baoquan Sun 《Science China Materials》 SCIE EI CSCD 2018年第1期125-126,共2页
Developing photovoltaic(PV)cells for harvesting renewable and clean solar energy is a promising strategy to meet the growing energy demand.Perovskite solar cells(PSCs),as a new player in the photovoltaic field,exhibit... Developing photovoltaic(PV)cells for harvesting renewable and clean solar energy is a promising strategy to meet the growing energy demand.Perovskite solar cells(PSCs),as a new player in the photovoltaic field,exhibit rapid development with an original power conversion efficiency(PCE)of 3.81%in 2009,a promising PCE of over 20%in 2014 and a record PCE of 22.1%in 展开更多
关键词 SCN PCE Constructing robust all-inorganic contacts enable stable perovskite solar cells with efficiencies over 20
原文传递
Numerical simulation of the performance of the a-Si:H/a-SiGe:H/a-SiGe:H tandem solar cell 被引量:1
18
作者 Ke Shaoying Wang Chong +2 位作者 Pan Tao Yang Jie Yang Yu 《Journal of Semiconductors》 EI CAS CSCD 2014年第3期91-96,共6页
The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5... The computer program AMPS-1D(analysis of microelectronic and photonic structures) has been employed to simulate the performance of the a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cell at the radiation of AM1.5G(100 mW/cm2/ and room temperature. Firstly, three sub-cells with band gaps of 1.8, 1.6 and 1.4 eV are simulated, respectively. The simulation results indicate that the density of defect states is an important factor, which affects the open circuit voltage and the filling factor of the solar cell. The two-step current matching method and the control variate method are employed in the simulation. The results show that the best solar cell performance would be achieved when the intrinsic layer thickness from top to bottom is set to be 70, 180 and 220 nm, respectively. We also optimize the tunnel-junction structure of the solar cell reasonably, the simulation results show that the open circuit voltage, filling factor and conversion efficiency are all improved and the S-shape current density–voltage curve disappears during optimizing the tunnel-junction structure. Besides, the diagram of the energy band and the carrier recombination rate are also analyzed. Finally, our simulation data are compared to the experimental data published in other literature. It is demonstrated that the numerical results agree with the experimental ones very well. 展开更多
关键词 tandem solar cell conversion efficiency tunnel junction optical band gap current matching
原文传递
D-A structural protean small molecule donor materials for solution-processed organic solar cells 被引量:1
19
作者 Qiong WU Dan Deng +1 位作者 Kun Lu Zhi-Xiang Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第11期2065-2077,共13页
Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) s... Under the synergistic effect of molecular design and devices engineering, small molecular organic solar cells have presented an unstoppable tendency for rapid development with putting forward donor- acceptor (D-A) structures. Up to now, the highest power conversion efficiency of small molecules has exceeded 11%, comparable to that of polymers. In this review, we summarize the high performance small molecule donors in various classes of typical donor-acceptor (D-A) structures and discuss their relationships briefly. 展开更多
关键词 Small molecule donor materials Bulk heterojunction solar cells Donor-acceptor structures Molecule design Power conversion efficiency
原文传递
Construction of High Level Expression Cell Lines of Erythropoietin
20
作者 李文君 张洪齐 +2 位作者 丛靖莉 李一勤 刘进元 《Tsinghua Science and Technology》 SCIE EI CAS 1998年第3期23-26,共4页
Human erythropoietin gene was ligated into the mammalian high efficiency expression vector pSV2 dhfr by standard procedures of filling in, trimming, ligation and transformation to construct a high efficiency expressi... Human erythropoietin gene was ligated into the mammalian high efficiency expression vector pSV2 dhfr by standard procedures of filling in, trimming, ligation and transformation to construct a high efficiency expression vector. After the expression vector pSEPO25 was transfected into CHO dhfr - cells, the cell line which could express high levels of EPO was successfully selected. The result lays the foundation for production of EPO by genetic biotechnology. 展开更多
关键词 ERYTHROPOIETIN vector construction high efficiency expression cell line
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部