BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity.During osteoporosis,bone mesenchymal stem cells(BMSCs)exhibit an increased abil...BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity.During osteoporosis,bone mesenchymal stem cells(BMSCs)exhibit an increased ability to differentiate into adipocytes and a decreased ability to differentiate into osteoblasts,resulting in bone loss.Jumonji domain-containing 1C(JMJD1C)has been demonstrated to suppress osteoclastogenesis.AIM To examine the effect of JMJD1C on the osteogenesis of BMSCs and the potential underlying mechanism.METHODS BMSCs were isolated from mouse bone marrow tissues.Oil Red O staining,Alizarin red staining,alkaline phosphatase staining and the expression of adipo-genic and osteogenic-associated genes were assessed to determine the differen-tiation of BMSCs.Bone marrow-derived macrophages(BMMs)were incubated with receptor activator of nuclear factor-kappaΒligand to induce osteoclast differentiation,and osteoclast differen-tiation was confirmed by tartrate-resistant acid phosphatase staining.Other related genes were measured via reverse transcription coupled to the quantitative polymerase chain reaction and western blotting.Enzyme-linked immunosorbent assays were used to measure the levels of inflammatory cytokines,including tumor necrosis factor alpha,interleukin-6 and interleukin-1 beta.RESULTS The osteogenic and adipogenic differentiation potential of BMSCs isolated from mouse bone marrow samples was evaluated.JMJD1C mRNA and protein expression was upregulated in BMSCs after osteoblast induction,while p-nuclear factor-κB(NF-κB)and inflammatory cytokines were not significantly altered.Knockdown of JMJD1C repressed osteogenic differentiation and enhanced NF-κB activation and inflammatory cytokine release in BMSCs.Moreover,JMJD1C expression decreased during BMM osteoclast differentiation.CONCLUSION The JMJD1C/NF-κB signaling pathway is potentially involved in BMSC osteogenic differentiation and may play vital roles in the pathogenesis of osteoporosis.展开更多
BACKGROUND Stromal cell derived factor-1(SDF-1)plays a pivotal role in the recruitment of stem cells to injured livers.However,the changes of SDF-l in patients with hepatitis B virus(HBV)-related acute-on-chronic live...BACKGROUND Stromal cell derived factor-1(SDF-1)plays a pivotal role in the recruitment of stem cells to injured livers.However,the changes of SDF-l in patients with hepatitis B virus(HBV)-related acute-on-chronic liver failure(ACLF)have yet to be elucidated.AIM To study the SDF-1 changes in patients with HBV-related ACLF.METHODS 30 patients with HBV-related ACLF,27 patients with chronic hepatitis B and 20 healthy individuals are involved in our study.The SDF-l mRNA expression in liver tissue was detected by quantitative real-time polymerase chain reaction.Immunohistochemical staining was performed to illustrate the expression of SDFl,CXC receptor 4(CXCR4)and Ki67.The serum SDF-l concentrations were also detected by enzyme-linked immunosorbent assays.RESULTS The expression of SDF-1 mRNA from ACLF patients was remarkably higher than that from other patients(both P<0.05).The expression of SDF-l,CXCR4 and Ki67 from ACLF were the highest among the three groups(all P<0.01).The serum SDF-l levels in ACLF patients were significantly lower than that in other patients(both P<0.01).Moreover,in ACLF patients,the serum SDF-1 Levels were positively correlated with serum total bilirubin and international normalized ratio.In addition,the serum SDF-l levels in survival were significantly lower compared with the non-survivals(P<0.05).The area under the curve for the serum SDF-1 level in predicting 28-d mortality was 0.722(P<0.05).CONCLUSION This study provides the SDF-1 changes in patients with HBV-related ACLF.The SDF-1 Level at admission may serve as a promising prognostic marker for predicting short-term prognosis.展开更多
There are various clinical treatments for traumatic brain injury,including surgery,drug therapy,and rehabilitation therapy;howeve r,the therapeutic effects are limited.Scaffolds combined with exosomes represent a prom...There are various clinical treatments for traumatic brain injury,including surgery,drug therapy,and rehabilitation therapy;howeve r,the therapeutic effects are limited.Scaffolds combined with exosomes represent a promising but challenging method for improving the repair of traumatic brain injury.In this study,we determined the ability of a novel 3D-printed collagen/chitosan scaffold loaded with exosomes derived from neural stem cells pretreated with insulin-like growth factor-1(3D-CC-INEXOS) to improve traumatic brain injury repair and functional recove ry after traumatic brain injury in rats.Composite scaffolds comprising collagen,chitosan,and exosomes derived from neural stem cells pretreated with insulin-like growth fa ctor-1(INEXOS) continuously released exosomes for 2weeks.Transplantation of 3D-CC-INExos scaffolds significantly improved motor and cognitive functions in a rat traumatic brain injury model,as assessed by the Morris water maze test and modified neurological seve rity scores.In addition,immunofluorescence staining and transmission electron microscopy showed that3D-CC-INExos implantation significantly improved the recove ry of damaged nerve tissue in the injured area.In conclusion,this study suggests that transplanted3D-CC-INExos scaffolds might provide a potential strategy for the treatment of traumatic brain injury and lay a solid foundation for clinical translation.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SD...BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SDF-1αon cartilage differentiation remain largely unknown.Identifying the specific regulatory effects of SDF-1αon MSCs will provide a useful target for the treatment of degenerative articular diseases.AIM To explore the role and mechanism of SDF-1αin cartilage differentiation of MSCs and primary chondrocytes.METHODS The expression level of C-X-C chemokine receptor 4(CXCR4)in MSCs was assessed by immunofluorescence.MSCs treated with SDF-1αwere stained for alkaline phosphatase(ALP)and with Alcian blue to observe differentiation.Western blot analysis was used to examine the expression of SRY-box transcription factor 9,aggrecan,collagen II,runt-related transcription factor 2,collagen X,and matrix metalloproteinase(MMP)13 in untreated MSCs,of aggrecan,collagen II,collagen X,and MMP13 in SDF-1α-treated primary chondrocytes,of glycogen synthase kinase 3β(GSK3β)p-GSK3βandβ-catenin expression in SDF-1α-treated MSCs,and of aggrecan,collagen X,and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001(SDF-1αinhibitor).RESULTS Immunofluorescence showed CXCR4 expression in the membranes of MSCs.ALP stain was intensified in MSCs treated with SDF-1αfor 14 d.The SDF-1αtreatment promoted expression of collagen X and MMP13 during cartilage differentiation,whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs.Further,those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes.SDF-1αpromoted the expression of p-GSK3βandβ-catenin in MSCs.And,finally,inhibition of this pathway by ICG-001(5μmol/L)neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.CONCLUSION SDF-1αmay promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway.These findings provide further evidence for the use of MSCs and SDF-1αin the treatment of cartilage degeneration and osteoarthritis.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)exert anti-oncogenic effects via exosomes containing non-coding RNA(ncRNA),which play important roles in tumor biology.Our preliminary study identified the interaction of the ncR...BACKGROUND Mesenchymal stem cells(MSCs)exert anti-oncogenic effects via exosomes containing non-coding RNA(ncRNA),which play important roles in tumor biology.Our preliminary study identified the interaction of the ncRNA hsa_-circ_0000563(circ563)and the circ563-associated miR-148a-3p in exosomes,as miR-148a-3p and its target metal-regulatory transcription factor-1(MTF-1)are implicated in hepatocellular carcinoma(HCC)progression.AIM To identify the clinical significance,functional implications,and mechanisms of circ563 in HCC.METHODS The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared,and their effects on HCC cells were assessed.Using a dual-luciferase reporter assay,miR-148a-3p was identified as an associated microRNA of circ563,whose role in HCC regulation was assessed in vitro and in vivo.RESULTS The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis.Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression.The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion.Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the expression of MTF-1.In HCC tissues,circ563 expression was negatively correlated with miR-148a-3p expression but positively correlated with MTF-1 levels.CONCLUSION MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway,while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.展开更多
OBJECTIVE: To study the ehanges of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation anti pancreatic microcirculation in rats with acut...OBJECTIVE: To study the ehanges of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation anti pancreatic microcirculation in rats with acute edematous pancreatitis (AEP). METHODS: The model of AEP was established with 50 Wistar rats, and the changes of PECAM-1 expression on PMNs from the splenic vein and inferior vena cava were determined by flow cytometry. RESULTS: PECAM-I expression on PMNs showed no significant difference between pancreatic microcirculation and peripheral circulation at AEP2h and AEP4h time points. From the AEP4h to the AEP8h time point, PECAM-1 expression in peripheral circulation was up-regulated, but PECAM-1 expression in pancreatic microcirculation was down-regulated. PECAM-1 expression had a significant difference between pancreatic microcirculation and peripheral circulation at the AEP8h time point (P<0.05). CONCLUSION: PECAM-1 expression on PMNs is in a converse way between pancreatic microcirculation and peripheral circulation in AEP.展开更多
BACKGROUND: Traditional Chinese medicine is a potent agent in the management of clinical and experimental acute pancreatitis (AP), but the molecular mechanism of its the- rapeutic action is unclear. Numerous experimen...BACKGROUND: Traditional Chinese medicine is a potent agent in the management of clinical and experimental acute pancreatitis (AP), but the molecular mechanism of its the- rapeutic action is unclear. Numerous experimental and clinical studies have shown that platelet endothelial cell ad- hesion molecule-1 (PECAM-1) is pivotal to leukocyte re- cruitment, which results in microcirculatory injury during inflammation, but its role in acute pancreatitis is poorly un- derstood. We investigated the effects of a compound of tra- ditional Chinese medicine pancreatitis-1 (TCMP-1) on the changes of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in acute edematous pancreatitis (AEP). METHODS: The model of acute pancreatitis was estab- lished by subcutaneous injection of caerulein, and TCMP-1 treated groups were given TCMP-1 by catheterization from mouth to stomach (20 ml/kg) immediately after first time subcutaneous injection of caerulein. The changes of expres- sion of PECAM-1 on leukocytes from the blood of the splenic vein and inferior vena cava were determined by flow cytometry. RESULTS: In the AEP group, expression of PECAM-1 on PMNs was not significantly different between pancreatic microcirculation and systemic circulation at AEP2h and AEP4h time point. Then from AEP4h time point to AEP8h time point, expression of PECAM-1 was up-regulated in systemic circulation while it was down-regulated in pancre- atic microcirculation and was significantly different be- tween pancreatic microcirculation and systemic circulation at AEP8h time point (P<0.05). In the TCMP-1 treated group, compared with the AEP group, expression of PE-CAM-1 on PMNs decreased in different levels between pan- creatic microcirculation and systemic circulation and was of significant difference at AEP8h time point (P <0.05). CONCLUSION: Inhibition of PECAM-1 expression on PMNs may prevent PMNs from transmigration through the endo- thelium and may be one of the treatment mechanisms of TCMP-1 decoction on AEP.展开更多
AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-...AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-7721 cells and its contribution to this adhesive course. METHODS: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronous rates of SMMC-7721 cells and expression of integrinβ1 in SMMC-7721 cells were detected by flow cytometer. RESULTS: The percentage of cell cycle phases of general SMMC-7721 cells was 11.01% in G2/M phases, 53.51% in G0/G1 phase, and 35.48% in S phase. The synchronous rates of G1 and S phase SMMC-7721 cells amounted to 74.09% and 98.29%, respectively. The adhesive force of SMMC-7721 cells to endothelial cells changed with the variations of adhesive time and presented behavior characteristics of adhesion and de-adhesion. S phase SMMC-7721 cells had higher adhesive forces than d phase cells [(307.65±92.10)×10-10N vs(195.42±60.72)×10-10N, P<0.01]. The expressive fluorescent intensity of integrinβ1 in G1 phase SMMC-7721 cells was depressed more significantly than the values of S phase and general SMMC-7721cells. The contribution of adhesive integrinβ1 was about 53% in this adhesive course. CONCLUSION: SMMC-7721 cells can be synchronized preferably in d and S phases with thymine-2-deoxyriboside and colchicines. The adhesive molecule integrinβ1 expresses a high level in SMMC-7721 cells and shows differences in various cell cycles, suggesting integrin β1 plays an important role in adhesion to endothelial cells. The change of adhesive forces in different cell cycle SMMC-7721 cells indicates that S phase cells play predominant roles possibly while they interact with endothelial cells.展开更多
BACKGROUND:Platelet endothelial cell adhesion molecule-1(PECAM-1),also known as CD31,is mainly distributed in vascular endothelial cells.Studies have shown that PECAM-1 is a very significant indicator of angiogenesis,...BACKGROUND:Platelet endothelial cell adhesion molecule-1(PECAM-1),also known as CD31,is mainly distributed in vascular endothelial cells.Studies have shown that PECAM-1 is a very significant indicator of angiogenesis,and has been used as an indicator for vascular endothelial cells.The present study aimed to explore the relationship between the expression of PECAM-1 and the degree of acute lung injury(ALI) and fibrosis in paraquat(PQ) induced lung injury in rabbits.METHODS:Thirty-six adult New Zealand rabbits were randomly divided into three groups(12rabbits in each group) according to PQ dosage:8 mg/kg(group A),16 mg/kg(group B),and 32 mg/kg(group C).After PQ infusion,the rabbits were monitored for 7 days and then euthanized.The lungs were removed for histological evaluation.Masson staining was used to determine the degree of lung fibrosis(LF),and semi-quantitative immune-histochemistry analysis to determine the expression of PECAM-1.Pearson's product-moment correlation analysis was performed to evaluate the relationship between the expression of PECAM-1 and the extent of lung injuries expressed by ALI score and degree of LF.RESULTS:Rabbits in the three groups showed apparent poisoning.The rabbits survived longer in group A than in groups B and C(6.47±0.99 days vs.6.09±1.04 days vs.4.77±2.04 days)(P<0.05).ALI score was lower in group A than in groups B and C(8.33±1.03 vs.9.83±1.17 vs.11.50±1.38)(P<0.05),and there was statistically significant difference between group B and group C(P=0.03).LF was slighter in group A than in groups B and C(31.09%±2.05%vs.34.37%±1.62%vs.36.54%±0.44%)(P<0.05),and there was statistically significant difference between group B and group C(P=0.026).The PEACAM-1 expression was higher in group A than in groups B and C(20.31%±0.70%vs.19.34%±0.68%vs.18.37%±0.46%)(P<0.05),and there was statistically significant difference between group B and group C(P=0.017).Pearson's correlation analysis showed that the expression of PECAM-1 was negatively correlated to both ALI score(Coe=-0.732,P=0.001)and degree of LF(Coe=-0.779,P<0.001).CONCLUSIONS:The PECAM-1 expression significantly decreases in New Zealand rabbits after PQ poisoning,and the decrease is dose-dependent.The PECAM-1 expression is negatively correlated with ALI score and LF,showing a significant role in the development of lung injuries induced by PQ.展开更多
AIM: To investigate the changes of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation and pancreatic microcirculation in cerulein-induce...AIM: To investigate the changes of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation and pancreatic microcirculation in cerulein-induced acute edematous pancreatitis (AEP).METHODS: Fifty Wistar rats were randomly divided into control group (n=10) and AEP group (n=40). A model of AEP was established by subcutaneous injection of cerulein 5.5 and 7.5 μg/kg at 0 and 1 h after the beginning of experiment respectively. PECAM-1 expression on PMNs from splenic vein and inferior vena cava was determined by RT-PCR at mRNA level and determined by flow cytometry at protein level.RESULTS: In experimental rats, an increased PECAM-1mRNA expression was seen from 4 to 8 h of AEP in peripheral circulation (0.77±0.25%, 0.76±0.28%, 0.89±0.30%,1.00±0.21% ), while in pancreatic microcirculation,expression decreased from 2 h and reached the lowest level at 6 h of AEP (0.78±0.29%, 0.75±0.26%, 0.62±0.28%,0.66±0.20%). There were significant differences at 8-h time point of AEP between peripheral circulation and pancreatic microcirculation (1.00±0.21% vs0.66±0.20%, P<0.05).Meanwhile,the difference at protein level was also found.CONCLUSION: A reverse expression of PECAM-1 on PMNs was found between peripheral circulation and pancreatic microcirculation, suggesting that inhibition of PECAM-1expression may improve the pathological change of AEP.展开更多
The formation of nerve bundles,which is partially regulated by neural cell adhesion molecule 1(NCAM1),is important for neural network organization during peripheral nerve regeneration.However,little is known about how...The formation of nerve bundles,which is partially regulated by neural cell adhesion molecule 1(NCAM1),is important for neural network organization during peripheral nerve regeneration.However,little is known about how the extracellular matrix(ECM)microenvironment affects this process.Here,we seeded dorsal root ganglion tissue blocks on different ECM substrates of peripheral nerve ECM-derived matrixgel,Matrigel,laminin 521,collagen I,and collagen IV,and observed well-aligned axon bundles growing in the peripheral nerve ECM-derived environment.We confirmed that NCAM1 is necessary but not sufficient to trigger this phenomenon.A protein interaction assay identified collagen VI as an extracellular partner of NCAM1 in the regulation of axonal fasciculation.Collagen VI interacted with NCAM1 by directly binding to the FNIII domain,thereby increasing the stability of NCAM1 at the axolemma.Our in vivo experiments on a rat sciatic nerve defect model also demonstrated orderly nerve bundle regeneration with improved projection accuracy and functional recovery after treatment with 10 mg/m L Matrigel and 20μg/m L collagen VI.These findings suggest that the collagen VI-NCAM1 pathway plays a regulatory role in nerve bundle formation.This study was approved by the Animal Ethics Committee of Guangzhou Medical University(approval No.GY2019048)on April 30,2019.展开更多
Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially imp...Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans. However, it is not well known how serum factors affect the adhesion of monocytes. Methods: We have studied the effect of fetal calf serum (FCS), which we considered a source of LDL, on the adhesion of monocytes to endothelial cells (ECs) by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells (EC monoculture) and a co-culture with bovine aortic smooth muscle cells (EC-SMC co-culture). Results: It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells, and the higher the concentration of FCS in the medium, the greater the adhesion of THP-1 cells to endothelial cells. Adhesion of THP-1 cells to an EC-SMC co-culture was approximately twofold greater than that to an EC monoculture, and after adhering to endothelial cells, many THP-1 cells trans-migrated into the layer of smooth muscle cells. Conclusion: The results suggest that the elevation of the LDL (cholesterol) level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytes to the endothelium and their subsequent migration into subendothelial spaces.展开更多
Protein N-glycosylation plays very important roles in immunity and α-mannosidase is one of the key enzymes in Nglycosylation. This paper reports that inhibition of α-mannosidase Man2c1 gene expression enhances adhes...Protein N-glycosylation plays very important roles in immunity and α-mannosidase is one of the key enzymes in Nglycosylation. This paper reports that inhibition of α-mannosidase Man2c1 gene expression enhances adhesion of Jurkat T cells. In comparison to the controls with normal expression of the enzyme, Jurkat cells with the inhibition of Man2c1 gene expression (AS cell) formed larger aggregates in culture, indicating an enhancement of adhesion between the cells. mRNA differential display analysis discovered up-regulation of several adhesion molecule genes in the AS cell. Because of the pivotal role played by CD54-LFA-1 interaction in immune cell interaction, this study focused on the contribution of enhanced expression of CD54 and LFA-1 to the enhanced adhesion of AS Jurkat cells. These facts, including increased binding of AS cells to ICAM-1-Fc, Mg^2+ activation of the binding of AS cells to ICAM-1-Fc and enhanced aggregation of AS cells, together with the inhibiting effect of a blocking CD1 la mAb on the binding to ICAM-1-Fc and aggregation of the cells demonstrate an important contribution of enhanced CD54-LFA-1 interaction to increased adhesion between AS cells. The enhanced CD54-LFA-1 interaction also resulted in increased adhesion between AS Jurkat T cells and Raji B cells. In addition, AS cells showed cytoskeletal rearrangement. The data imply a biological significance of MAN2C1 in T-cell functioning.展开更多
The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peri...The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A m RNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.展开更多
This study examined the expression of cell adhesion molecule 1 (CADM1) in pancreatic cancer and the possible mechanism. The expression of CADM 1 was detected by immunohistochemistry in tissues of pancreatic cancer, ...This study examined the expression of cell adhesion molecule 1 (CADM1) in pancreatic cancer and the possible mechanism. The expression of CADM 1 was detected by immunohistochemistry in tissues of pancreatic cancer, pancreatitis, and normal pancreas. The plasmid pcDNA3.1-Hy- gro(+)/CADM1 was transfected into PANC-1 cells (a pancreatic cancer cell line). The expression of CADM1 in the transfected cells was determined by RT-PCR and Western blotting. Cell growth was measured by the MTT method and cell apoptosis by flow cytometry. The results showed that CADM1 was weakly expressed in tissues of pancreatic cancer in contrast to its high expression in normal pancreatic and pancreatitis tissues. The expression level of CADM in pancreatic caner was intensely correlated with the differentiation degree, lymph node metastasis and TNM stages. The growth of CADMl-transfected PANC-1 cells was significantly suppressed in vitro by a G1 cell cycle arrest and apoptosis occurrence. It was concluded that re-expression of CADM1 inhibits the growth of pancreatic cancer cells and induces their apoptosis in vitro. As a tumor suppressor gene, CADM1 plays an important role in the occurrence, progression and metastasis of pancreatic cancer.展开更多
Background Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important cytokines in inflammatory response, which may induce rolling and adhesion of both leukocytes and l...Background Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important cytokines in inflammatory response, which may induce rolling and adhesion of both leukocytes and lymphocytes, while modulating vascular permeability at the same time. These adhesion molecules usually serve as surrogate markers of activation and injury of vascular endothelial cells. Tumor necrosis factor-α (TNF-α) is a key factor to induce the expression and production of the above cell adhesion molecules. However, it remains to be elucidated whether exogenous ubiquitin exerts any effect on the cytokines in sepsis-induced ALI. Methods Sixty mice were devided randomly into five groups with twelve mice in each group, i.e. CLP group, SHAM group, UB1 group (10 mg/kg), UB2 group (5 mg/kg) and UB3 group(1 mg/kg). Mice of SHAM group underwent sham operation, and other four groups underwent CLP. Six hours after surgery, mice of three UB groups received ubiquitin by caudal vein injection while CLP and SHAM group received vehicle. Seven hours after surgery, blood and lungs of all mice were collected. ICAM-1, VCAM-1 and TNF-α level of 9% lung homogenate and serum TNF-α level were measured by ELISA. Results Pulmonary ICAM-1, VCAM-1 and TNF-α level of three UB groups were lower than CLP and SHAM group, and there were several comparisons with a statistically significant difference. Serum TNF-α level of three UB groups were slightly lower than CLP group, but far higher than SHAM group. Pulmonary ICAM-1 level, VCAM-1 level and serum TNF-α level of UB3 group were lower than UB1 and UB2 group, and there was a significant difference in VCAM-1 between UB3 and UB1 group. Pulmonary TNF-α level of UB3 group was slightly higher than UB1 and UB2 group.展开更多
Objective:Lymphatic endothelial cell(LEC)proliferation is essential for lymphangiogenesis.Hypoxia induces lymphangiogenesis,but it directly inhibits LEC proliferation and the underlying mechanisms have not been fully ...Objective:Lymphatic endothelial cell(LEC)proliferation is essential for lymphangiogenesis.Hypoxia induces lymphangiogenesis,but it directly inhibits LEC proliferation and the underlying mechanisms have not been fully understood.The aim of this study was to investigate the role of carcinoembryonic antigen-related cell adhesion molecule 1(CEACAM1)in hypoxia-repressed LEC proliferation.Methods:Human dermal lymphatic endothelial cells(HDLECs)were cultured under normoxic or hypoxic conditions,and cell proliferation was determined using MTT or CCK-8 assays.CEACAM1 expression was silenced by siRNA transfection.Activation of mitogen-activated protein kinases(MAPKs)was examined by Western blotting and blocked by specific inhibitors.Results:Under hypoxia,HDLECs proliferation was suppressed and CEACAM1 expression was downregulated.Silence of CEACAM1 in normoxia inhibited HDLECs proliferation and did not further decrease proliferation in HDLECs in response to hypoxia,suggesting that CEACAM1 may mediate hypoxia-induced inhibition of HDLECs proliferation.In addition,silence of CEACAM1 increased phosphorylation of MAPK molecules:extracellular signal-regulated kinase(ERK),p38 MAPK and Jun N-terminal kinase(JNK)in HDLECs.However,only inhibition of the JNK pathway rescued the reduction of HDLEC proliferation induced by CEACAM1 silence.Conclusion:Our results suggested that hypoxia downregulates CEACAM1 expression by activation of the JNK pathway,leading to inhibition of HDLEC proliferation.These findings may help to understand the mechanisms of LEC-specific response to hypoxia and develop novel therapies for pathological lymphangiogenesis.展开更多
Microbubbles can enhance the detection in noninvasive ultrasound imaging.Recently,targeted microbubbles have been developed to selectively adhere to specific and overexpressed p molecules in endothelial cells in some ...Microbubbles can enhance the detection in noninvasive ultrasound imaging.Recently,targeted microbubbles have been developed to selectively adhere to specific and overexpressed p molecules in endothelial cells in some pathologic conditions.However,the law of展开更多
基金2018 Henan Medical Science and Technology Research Plan Project,China,No.SBGJ2018019.
文摘BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity.During osteoporosis,bone mesenchymal stem cells(BMSCs)exhibit an increased ability to differentiate into adipocytes and a decreased ability to differentiate into osteoblasts,resulting in bone loss.Jumonji domain-containing 1C(JMJD1C)has been demonstrated to suppress osteoclastogenesis.AIM To examine the effect of JMJD1C on the osteogenesis of BMSCs and the potential underlying mechanism.METHODS BMSCs were isolated from mouse bone marrow tissues.Oil Red O staining,Alizarin red staining,alkaline phosphatase staining and the expression of adipo-genic and osteogenic-associated genes were assessed to determine the differen-tiation of BMSCs.Bone marrow-derived macrophages(BMMs)were incubated with receptor activator of nuclear factor-kappaΒligand to induce osteoclast differentiation,and osteoclast differen-tiation was confirmed by tartrate-resistant acid phosphatase staining.Other related genes were measured via reverse transcription coupled to the quantitative polymerase chain reaction and western blotting.Enzyme-linked immunosorbent assays were used to measure the levels of inflammatory cytokines,including tumor necrosis factor alpha,interleukin-6 and interleukin-1 beta.RESULTS The osteogenic and adipogenic differentiation potential of BMSCs isolated from mouse bone marrow samples was evaluated.JMJD1C mRNA and protein expression was upregulated in BMSCs after osteoblast induction,while p-nuclear factor-κB(NF-κB)and inflammatory cytokines were not significantly altered.Knockdown of JMJD1C repressed osteogenic differentiation and enhanced NF-κB activation and inflammatory cytokine release in BMSCs.Moreover,JMJD1C expression decreased during BMM osteoclast differentiation.CONCLUSION The JMJD1C/NF-κB signaling pathway is potentially involved in BMSC osteogenic differentiation and may play vital roles in the pathogenesis of osteoporosis.
基金Science and Technology Project of Hengshui,No.2019014061Z.
文摘BACKGROUND Stromal cell derived factor-1(SDF-1)plays a pivotal role in the recruitment of stem cells to injured livers.However,the changes of SDF-l in patients with hepatitis B virus(HBV)-related acute-on-chronic liver failure(ACLF)have yet to be elucidated.AIM To study the SDF-1 changes in patients with HBV-related ACLF.METHODS 30 patients with HBV-related ACLF,27 patients with chronic hepatitis B and 20 healthy individuals are involved in our study.The SDF-l mRNA expression in liver tissue was detected by quantitative real-time polymerase chain reaction.Immunohistochemical staining was performed to illustrate the expression of SDFl,CXC receptor 4(CXCR4)and Ki67.The serum SDF-l concentrations were also detected by enzyme-linked immunosorbent assays.RESULTS The expression of SDF-1 mRNA from ACLF patients was remarkably higher than that from other patients(both P<0.05).The expression of SDF-l,CXCR4 and Ki67 from ACLF were the highest among the three groups(all P<0.01).The serum SDF-l levels in ACLF patients were significantly lower than that in other patients(both P<0.01).Moreover,in ACLF patients,the serum SDF-1 Levels were positively correlated with serum total bilirubin and international normalized ratio.In addition,the serum SDF-l levels in survival were significantly lower compared with the non-survivals(P<0.05).The area under the curve for the serum SDF-1 level in predicting 28-d mortality was 0.722(P<0.05).CONCLUSION This study provides the SDF-1 changes in patients with HBV-related ACLF.The SDF-1 Level at admission may serve as a promising prognostic marker for predicting short-term prognosis.
基金supported by the National Major Scientific and Technological Special Project for Significant New Drugs Development,No.2019ZX09301-147 (to LXZ)。
文摘There are various clinical treatments for traumatic brain injury,including surgery,drug therapy,and rehabilitation therapy;howeve r,the therapeutic effects are limited.Scaffolds combined with exosomes represent a promising but challenging method for improving the repair of traumatic brain injury.In this study,we determined the ability of a novel 3D-printed collagen/chitosan scaffold loaded with exosomes derived from neural stem cells pretreated with insulin-like growth factor-1(3D-CC-INEXOS) to improve traumatic brain injury repair and functional recove ry after traumatic brain injury in rats.Composite scaffolds comprising collagen,chitosan,and exosomes derived from neural stem cells pretreated with insulin-like growth fa ctor-1(INEXOS) continuously released exosomes for 2weeks.Transplantation of 3D-CC-INExos scaffolds significantly improved motor and cognitive functions in a rat traumatic brain injury model,as assessed by the Morris water maze test and modified neurological seve rity scores.In addition,immunofluorescence staining and transmission electron microscopy showed that3D-CC-INExos implantation significantly improved the recove ry of damaged nerve tissue in the injured area.In conclusion,this study suggests that transplanted3D-CC-INExos scaffolds might provide a potential strategy for the treatment of traumatic brain injury and lay a solid foundation for clinical translation.
基金Supported by Henan Provincial Natural Science Foundation of China,No.212300410242Youth Project Jointly Constructed by Henan Provincial Health Commission and the Ministry,No.SBGJ202103008Henan Young and Middle-aged Health Science and Technology Innovation Excellent Youth Talent Training Project of China,No.YXKC2021047.
文摘BACKGROUND Mesenchymal stem cells(MSCs)have been applied to treat degenerative articular diseases,and stromal cell-derived factor-1α(SDF-1α)may enhance their therapeutic efficacy.However,the regulatory effects of SDF-1αon cartilage differentiation remain largely unknown.Identifying the specific regulatory effects of SDF-1αon MSCs will provide a useful target for the treatment of degenerative articular diseases.AIM To explore the role and mechanism of SDF-1αin cartilage differentiation of MSCs and primary chondrocytes.METHODS The expression level of C-X-C chemokine receptor 4(CXCR4)in MSCs was assessed by immunofluorescence.MSCs treated with SDF-1αwere stained for alkaline phosphatase(ALP)and with Alcian blue to observe differentiation.Western blot analysis was used to examine the expression of SRY-box transcription factor 9,aggrecan,collagen II,runt-related transcription factor 2,collagen X,and matrix metalloproteinase(MMP)13 in untreated MSCs,of aggrecan,collagen II,collagen X,and MMP13 in SDF-1α-treated primary chondrocytes,of glycogen synthase kinase 3β(GSK3β)p-GSK3βandβ-catenin expression in SDF-1α-treated MSCs,and of aggrecan,collagen X,and MMP13 in SDF-1α-treated MSCs in the presence or absence of ICG-001(SDF-1αinhibitor).RESULTS Immunofluorescence showed CXCR4 expression in the membranes of MSCs.ALP stain was intensified in MSCs treated with SDF-1αfor 14 d.The SDF-1αtreatment promoted expression of collagen X and MMP13 during cartilage differentiation,whereas it had no effect on the expression of collagen II or aggrecan nor on the formation of cartilage matrix in MSCs.Further,those SDF-1α-mediated effects on MSCs were validated in primary chondrocytes.SDF-1αpromoted the expression of p-GSK3βandβ-catenin in MSCs.And,finally,inhibition of this pathway by ICG-001(5μmol/L)neutralized the SDF-1α-mediated up-regulation of collagen X and MMP13 expression in MSCs.CONCLUSION SDF-1αmay promote hypertrophic cartilage differentiation in MSCs by activating the Wnt/β-catenin pathway.These findings provide further evidence for the use of MSCs and SDF-1αin the treatment of cartilage degeneration and osteoarthritis.
基金the National Natural Science Foundation of China,No.81972606 and 82271774.
文摘BACKGROUND Mesenchymal stem cells(MSCs)exert anti-oncogenic effects via exosomes containing non-coding RNA(ncRNA),which play important roles in tumor biology.Our preliminary study identified the interaction of the ncRNA hsa_-circ_0000563(circ563)and the circ563-associated miR-148a-3p in exosomes,as miR-148a-3p and its target metal-regulatory transcription factor-1(MTF-1)are implicated in hepatocellular carcinoma(HCC)progression.AIM To identify the clinical significance,functional implications,and mechanisms of circ563 in HCC.METHODS The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared,and their effects on HCC cells were assessed.Using a dual-luciferase reporter assay,miR-148a-3p was identified as an associated microRNA of circ563,whose role in HCC regulation was assessed in vitro and in vivo.RESULTS The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis.Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression.The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion.Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the expression of MTF-1.In HCC tissues,circ563 expression was negatively correlated with miR-148a-3p expression but positively correlated with MTF-1 levels.CONCLUSION MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway,while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.
文摘OBJECTIVE: To study the ehanges of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation anti pancreatic microcirculation in rats with acute edematous pancreatitis (AEP). METHODS: The model of AEP was established with 50 Wistar rats, and the changes of PECAM-1 expression on PMNs from the splenic vein and inferior vena cava were determined by flow cytometry. RESULTS: PECAM-I expression on PMNs showed no significant difference between pancreatic microcirculation and peripheral circulation at AEP2h and AEP4h time points. From the AEP4h to the AEP8h time point, PECAM-1 expression in peripheral circulation was up-regulated, but PECAM-1 expression in pancreatic microcirculation was down-regulated. PECAM-1 expression had a significant difference between pancreatic microcirculation and peripheral circulation at the AEP8h time point (P<0.05). CONCLUSION: PECAM-1 expression on PMNs is in a converse way between pancreatic microcirculation and peripheral circulation in AEP.
基金This work was supported by the grants from the National Natural ScienceFoundation of China (No. 39770722 and 39925032).
文摘BACKGROUND: Traditional Chinese medicine is a potent agent in the management of clinical and experimental acute pancreatitis (AP), but the molecular mechanism of its the- rapeutic action is unclear. Numerous experimental and clinical studies have shown that platelet endothelial cell ad- hesion molecule-1 (PECAM-1) is pivotal to leukocyte re- cruitment, which results in microcirculatory injury during inflammation, but its role in acute pancreatitis is poorly un- derstood. We investigated the effects of a compound of tra- ditional Chinese medicine pancreatitis-1 (TCMP-1) on the changes of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in acute edematous pancreatitis (AEP). METHODS: The model of acute pancreatitis was estab- lished by subcutaneous injection of caerulein, and TCMP-1 treated groups were given TCMP-1 by catheterization from mouth to stomach (20 ml/kg) immediately after first time subcutaneous injection of caerulein. The changes of expres- sion of PECAM-1 on leukocytes from the blood of the splenic vein and inferior vena cava were determined by flow cytometry. RESULTS: In the AEP group, expression of PECAM-1 on PMNs was not significantly different between pancreatic microcirculation and systemic circulation at AEP2h and AEP4h time point. Then from AEP4h time point to AEP8h time point, expression of PECAM-1 was up-regulated in systemic circulation while it was down-regulated in pancre- atic microcirculation and was significantly different be- tween pancreatic microcirculation and systemic circulation at AEP8h time point (P<0.05). In the TCMP-1 treated group, compared with the AEP group, expression of PE-CAM-1 on PMNs decreased in different levels between pan- creatic microcirculation and systemic circulation and was of significant difference at AEP8h time point (P <0.05). CONCLUSION: Inhibition of PECAM-1 expression on PMNs may prevent PMNs from transmigration through the endo- thelium and may be one of the treatment mechanisms of TCMP-1 decoction on AEP.
基金Supported by the National Natural Science Foundation of China, No.19972077 and No.10372121
文摘AIM: To investigate the adhesive mechanical properties of different cell cycle human hepatoma cells (SMMC-7721) to human umbilical vein endothelial cells (ECV-304), expression of adhesive molecule integrinβ1 in SMMC-7721 cells and its contribution to this adhesive course. METHODS: Adhesive force of SMMC-7721 cells to endothelial cells was measured using micropipette aspiration technique. Synchronous G1 and S phase SMMC-7721 cells were achieved by thymine-2-deoxyriboside and colchicines sequential blockage method and double thymine-2-deoxyriboside blockage method, respectively. Synchronous rates of SMMC-7721 cells and expression of integrinβ1 in SMMC-7721 cells were detected by flow cytometer. RESULTS: The percentage of cell cycle phases of general SMMC-7721 cells was 11.01% in G2/M phases, 53.51% in G0/G1 phase, and 35.48% in S phase. The synchronous rates of G1 and S phase SMMC-7721 cells amounted to 74.09% and 98.29%, respectively. The adhesive force of SMMC-7721 cells to endothelial cells changed with the variations of adhesive time and presented behavior characteristics of adhesion and de-adhesion. S phase SMMC-7721 cells had higher adhesive forces than d phase cells [(307.65±92.10)×10-10N vs(195.42±60.72)×10-10N, P<0.01]. The expressive fluorescent intensity of integrinβ1 in G1 phase SMMC-7721 cells was depressed more significantly than the values of S phase and general SMMC-7721cells. The contribution of adhesive integrinβ1 was about 53% in this adhesive course. CONCLUSION: SMMC-7721 cells can be synchronized preferably in d and S phases with thymine-2-deoxyriboside and colchicines. The adhesive molecule integrinβ1 expresses a high level in SMMC-7721 cells and shows differences in various cell cycles, suggesting integrin β1 plays an important role in adhesion to endothelial cells. The change of adhesive forces in different cell cycle SMMC-7721 cells indicates that S phase cells play predominant roles possibly while they interact with endothelial cells.
基金supported by grants from Guangdong Medical Research Fund(2010501)Guangzhou Pharmaceutical Health Science Fund(2009-YB-111)
文摘BACKGROUND:Platelet endothelial cell adhesion molecule-1(PECAM-1),also known as CD31,is mainly distributed in vascular endothelial cells.Studies have shown that PECAM-1 is a very significant indicator of angiogenesis,and has been used as an indicator for vascular endothelial cells.The present study aimed to explore the relationship between the expression of PECAM-1 and the degree of acute lung injury(ALI) and fibrosis in paraquat(PQ) induced lung injury in rabbits.METHODS:Thirty-six adult New Zealand rabbits were randomly divided into three groups(12rabbits in each group) according to PQ dosage:8 mg/kg(group A),16 mg/kg(group B),and 32 mg/kg(group C).After PQ infusion,the rabbits were monitored for 7 days and then euthanized.The lungs were removed for histological evaluation.Masson staining was used to determine the degree of lung fibrosis(LF),and semi-quantitative immune-histochemistry analysis to determine the expression of PECAM-1.Pearson's product-moment correlation analysis was performed to evaluate the relationship between the expression of PECAM-1 and the extent of lung injuries expressed by ALI score and degree of LF.RESULTS:Rabbits in the three groups showed apparent poisoning.The rabbits survived longer in group A than in groups B and C(6.47±0.99 days vs.6.09±1.04 days vs.4.77±2.04 days)(P<0.05).ALI score was lower in group A than in groups B and C(8.33±1.03 vs.9.83±1.17 vs.11.50±1.38)(P<0.05),and there was statistically significant difference between group B and group C(P=0.03).LF was slighter in group A than in groups B and C(31.09%±2.05%vs.34.37%±1.62%vs.36.54%±0.44%)(P<0.05),and there was statistically significant difference between group B and group C(P=0.026).The PEACAM-1 expression was higher in group A than in groups B and C(20.31%±0.70%vs.19.34%±0.68%vs.18.37%±0.46%)(P<0.05),and there was statistically significant difference between group B and group C(P=0.017).Pearson's correlation analysis showed that the expression of PECAM-1 was negatively correlated to both ALI score(Coe=-0.732,P=0.001)and degree of LF(Coe=-0.779,P<0.001).CONCLUSIONS:The PECAM-1 expression significantly decreases in New Zealand rabbits after PQ poisoning,and the decrease is dose-dependent.The PECAM-1 expression is negatively correlated with ALI score and LF,showing a significant role in the development of lung injuries induced by PQ.
基金Supported by National Natural Science Foundation of China, No.39925032
文摘AIM: To investigate the changes of platelet endothelial cell adhesion molecule-1 (PECAM-1) expression on polymorphonuclear leukocytes (PMNs) in peripheral circulation and pancreatic microcirculation in cerulein-induced acute edematous pancreatitis (AEP).METHODS: Fifty Wistar rats were randomly divided into control group (n=10) and AEP group (n=40). A model of AEP was established by subcutaneous injection of cerulein 5.5 and 7.5 μg/kg at 0 and 1 h after the beginning of experiment respectively. PECAM-1 expression on PMNs from splenic vein and inferior vena cava was determined by RT-PCR at mRNA level and determined by flow cytometry at protein level.RESULTS: In experimental rats, an increased PECAM-1mRNA expression was seen from 4 to 8 h of AEP in peripheral circulation (0.77±0.25%, 0.76±0.28%, 0.89±0.30%,1.00±0.21% ), while in pancreatic microcirculation,expression decreased from 2 h and reached the lowest level at 6 h of AEP (0.78±0.29%, 0.75±0.26%, 0.62±0.28%,0.66±0.20%). There were significant differences at 8-h time point of AEP between peripheral circulation and pancreatic microcirculation (1.00±0.21% vs0.66±0.20%, P<0.05).Meanwhile,the difference at protein level was also found.CONCLUSION: A reverse expression of PECAM-1 on PMNs was found between peripheral circulation and pancreatic microcirculation, suggesting that inhibition of PECAM-1expression may improve the pathological change of AEP.
基金supported by the National Natural Science Foundation of China,No.31800892(to JLZ)the Natural Science Foundation of Guangdong Province of China,No.2018A030310254(to YY)a grant from Guangzhou Medical University Start-up Project of China,No.B195002002048(to JLZ)。
文摘The formation of nerve bundles,which is partially regulated by neural cell adhesion molecule 1(NCAM1),is important for neural network organization during peripheral nerve regeneration.However,little is known about how the extracellular matrix(ECM)microenvironment affects this process.Here,we seeded dorsal root ganglion tissue blocks on different ECM substrates of peripheral nerve ECM-derived matrixgel,Matrigel,laminin 521,collagen I,and collagen IV,and observed well-aligned axon bundles growing in the peripheral nerve ECM-derived environment.We confirmed that NCAM1 is necessary but not sufficient to trigger this phenomenon.A protein interaction assay identified collagen VI as an extracellular partner of NCAM1 in the regulation of axonal fasciculation.Collagen VI interacted with NCAM1 by directly binding to the FNIII domain,thereby increasing the stability of NCAM1 at the axolemma.Our in vivo experiments on a rat sciatic nerve defect model also demonstrated orderly nerve bundle regeneration with improved projection accuracy and functional recovery after treatment with 10 mg/m L Matrigel and 20μg/m L collagen VI.These findings suggest that the collagen VI-NCAM1 pathway plays a regulatory role in nerve bundle formation.This study was approved by the Animal Ethics Committee of Guangzhou Medical University(approval No.GY2019048)on April 30,2019.
基金a Grant-in-Aid for Scientific Research onPriority Areas (No. 15086201) from the Ministry of Education, Culture, Sports, Science and Technology of Japanthe Health Bureauof Zhejiang Province (No. 2007B132), China
文摘Background:The adhesion of monocytes to the endothelium following accumulation of low-density lipoprotein (LDL) in subendothelial spaces is an important step in the development of intimal hyperplasia in arterially implanted vein grafts and atherosclerosis in both animals and humans. However, it is not well known how serum factors affect the adhesion of monocytes. Methods: We have studied the effect of fetal calf serum (FCS), which we considered a source of LDL, on the adhesion of monocytes to endothelial cells (ECs) by using human monocytic THP-1 cells and both a monolayer of cultured bovine aortic endothelial cells (EC monoculture) and a co-culture with bovine aortic smooth muscle cells (EC-SMC co-culture). Results: It was found that the addition of FCS to the medium greatly affected the adhesion of THP-1 cells, and the higher the concentration of FCS in the medium, the greater the adhesion of THP-1 cells to endothelial cells. Adhesion of THP-1 cells to an EC-SMC co-culture was approximately twofold greater than that to an EC monoculture, and after adhering to endothelial cells, many THP-1 cells trans-migrated into the layer of smooth muscle cells. Conclusion: The results suggest that the elevation of the LDL (cholesterol) level in blood provides a favorable condition for the development of intimal hyperplasia and atherosclerosis by promoting the adhesion of monocytes to the endothelium and their subsequent migration into subendothelial spaces.
基金This work was supported by the National Basic Research Program of China (No. 2001CB510004) by the National Natural Science foundation of China (No. 31070868).
文摘Protein N-glycosylation plays very important roles in immunity and α-mannosidase is one of the key enzymes in Nglycosylation. This paper reports that inhibition of α-mannosidase Man2c1 gene expression enhances adhesion of Jurkat T cells. In comparison to the controls with normal expression of the enzyme, Jurkat cells with the inhibition of Man2c1 gene expression (AS cell) formed larger aggregates in culture, indicating an enhancement of adhesion between the cells. mRNA differential display analysis discovered up-regulation of several adhesion molecule genes in the AS cell. Because of the pivotal role played by CD54-LFA-1 interaction in immune cell interaction, this study focused on the contribution of enhanced expression of CD54 and LFA-1 to the enhanced adhesion of AS Jurkat cells. These facts, including increased binding of AS cells to ICAM-1-Fc, Mg^2+ activation of the binding of AS cells to ICAM-1-Fc and enhanced aggregation of AS cells, together with the inhibiting effect of a blocking CD1 la mAb on the binding to ICAM-1-Fc and aggregation of the cells demonstrate an important contribution of enhanced CD54-LFA-1 interaction to increased adhesion between AS cells. The enhanced CD54-LFA-1 interaction also resulted in increased adhesion between AS Jurkat T cells and Raji B cells. In addition, AS cells showed cytoskeletal rearrangement. The data imply a biological significance of MAN2C1 in T-cell functioning.
基金supported by the National Natural Science Foundation of China,No.81371389,31500927,31300942,81201017the Collegiate Natural Science Foundation of Jiangsu Province of China,No.13KJB180018the Natural Science Foundation of Nantong University of China,No.14ZY013
文摘The expression of nerve cell adhesion molecule L1 in the neuronal growth cone of the central nervous system is strongly associated with the direction of growth of the axon, but its role in the regeneration of the peripheral nerve is still unknown. This study explored the problem in a femoral nerve section model in rats. L1 and semaphorin 3A m RNA and protein expressions were measured over the 4-week recovery period. Quantitative polymerase chain reaction showed that nerve cell adhesion molecule L1 expression was higher in the sensory nerves than in motor nerves at 2 weeks after injury, but vice versa for the expression of semaphorin 3A. Western blot assay results demonstrated that nerve cell adhesion molecule L1 expression was higher in motor nerves than in the sensory nerves at the proximal end after injury, but its expression was greater in the sensory nerves at 2 weeks. Semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 3 days and 1 week after injury. Nerve cell adhesion molecule L1 and semaphorin 3A expressions at the distal end were higher in the motor nerves than in the sensory nerves at 3 days, 1 and 2 weeks. Immunohistochemical staining results showed that nerve cell adhesion molecule L1 expression at the proximal end was greater in the sensory nerves than in the motor nerves; semaphorin 3A expression was higher in the motor nerves than in the sensory nerves at 2 weeks after injury. Taken together, these results indicated that nerve cell adhesion molecules L1 and semaphorin 3A exhibited different expression patterns at the proximal and distal ends of sensory and motor nerves, and play a coordinating role in neural chemotaxis regeneration.
文摘This study examined the expression of cell adhesion molecule 1 (CADM1) in pancreatic cancer and the possible mechanism. The expression of CADM 1 was detected by immunohistochemistry in tissues of pancreatic cancer, pancreatitis, and normal pancreas. The plasmid pcDNA3.1-Hy- gro(+)/CADM1 was transfected into PANC-1 cells (a pancreatic cancer cell line). The expression of CADM1 in the transfected cells was determined by RT-PCR and Western blotting. Cell growth was measured by the MTT method and cell apoptosis by flow cytometry. The results showed that CADM1 was weakly expressed in tissues of pancreatic cancer in contrast to its high expression in normal pancreatic and pancreatitis tissues. The expression level of CADM in pancreatic caner was intensely correlated with the differentiation degree, lymph node metastasis and TNM stages. The growth of CADMl-transfected PANC-1 cells was significantly suppressed in vitro by a G1 cell cycle arrest and apoptosis occurrence. It was concluded that re-expression of CADM1 inhibits the growth of pancreatic cancer cells and induces their apoptosis in vitro. As a tumor suppressor gene, CADM1 plays an important role in the occurrence, progression and metastasis of pancreatic cancer.
文摘Background Intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) are two important cytokines in inflammatory response, which may induce rolling and adhesion of both leukocytes and lymphocytes, while modulating vascular permeability at the same time. These adhesion molecules usually serve as surrogate markers of activation and injury of vascular endothelial cells. Tumor necrosis factor-α (TNF-α) is a key factor to induce the expression and production of the above cell adhesion molecules. However, it remains to be elucidated whether exogenous ubiquitin exerts any effect on the cytokines in sepsis-induced ALI. Methods Sixty mice were devided randomly into five groups with twelve mice in each group, i.e. CLP group, SHAM group, UB1 group (10 mg/kg), UB2 group (5 mg/kg) and UB3 group(1 mg/kg). Mice of SHAM group underwent sham operation, and other four groups underwent CLP. Six hours after surgery, mice of three UB groups received ubiquitin by caudal vein injection while CLP and SHAM group received vehicle. Seven hours after surgery, blood and lungs of all mice were collected. ICAM-1, VCAM-1 and TNF-α level of 9% lung homogenate and serum TNF-α level were measured by ELISA. Results Pulmonary ICAM-1, VCAM-1 and TNF-α level of three UB groups were lower than CLP and SHAM group, and there were several comparisons with a statistically significant difference. Serum TNF-α level of three UB groups were slightly lower than CLP group, but far higher than SHAM group. Pulmonary ICAM-1 level, VCAM-1 level and serum TNF-α level of UB3 group were lower than UB1 and UB2 group, and there was a significant difference in VCAM-1 between UB3 and UB1 group. Pulmonary TNF-α level of UB3 group was slightly higher than UB1 and UB2 group.
基金supported by grants from the National Natural Science Foundation of China(No.81873473 and No.91939110)Academic Promotion Program of Shandong First Medical University(No.2019QL014)Shandong Taishan Scholarship(Ju Liu).
文摘Objective:Lymphatic endothelial cell(LEC)proliferation is essential for lymphangiogenesis.Hypoxia induces lymphangiogenesis,but it directly inhibits LEC proliferation and the underlying mechanisms have not been fully understood.The aim of this study was to investigate the role of carcinoembryonic antigen-related cell adhesion molecule 1(CEACAM1)in hypoxia-repressed LEC proliferation.Methods:Human dermal lymphatic endothelial cells(HDLECs)were cultured under normoxic or hypoxic conditions,and cell proliferation was determined using MTT or CCK-8 assays.CEACAM1 expression was silenced by siRNA transfection.Activation of mitogen-activated protein kinases(MAPKs)was examined by Western blotting and blocked by specific inhibitors.Results:Under hypoxia,HDLECs proliferation was suppressed and CEACAM1 expression was downregulated.Silence of CEACAM1 in normoxia inhibited HDLECs proliferation and did not further decrease proliferation in HDLECs in response to hypoxia,suggesting that CEACAM1 may mediate hypoxia-induced inhibition of HDLECs proliferation.In addition,silence of CEACAM1 increased phosphorylation of MAPK molecules:extracellular signal-regulated kinase(ERK),p38 MAPK and Jun N-terminal kinase(JNK)in HDLECs.However,only inhibition of the JNK pathway rescued the reduction of HDLEC proliferation induced by CEACAM1 silence.Conclusion:Our results suggested that hypoxia downregulates CEACAM1 expression by activation of the JNK pathway,leading to inhibition of HDLEC proliferation.These findings may help to understand the mechanisms of LEC-specific response to hypoxia and develop novel therapies for pathological lymphangiogenesis.
基金supported by National Natural Science Foundation of China,No.30700151
文摘Microbubbles can enhance the detection in noninvasive ultrasound imaging.Recently,targeted microbubbles have been developed to selectively adhere to specific and overexpressed p molecules in endothelial cells in some pathologic conditions.However,the law of