Tetraiodofluorescein(TIF)and safranine T(ST)had great effects on the photovoltaic parameters of the cells.The Voc of the cells was about 3-5 times higher than that of the cells without TIK and ST,Isc increased 1 to 2 ...Tetraiodofluorescein(TIF)and safranine T(ST)had great effects on the photovoltaic parameters of the cells.The Voc of the cells was about 3-5 times higher than that of the cells without TIK and ST,Isc increased 1 to 2 orders of magnitude.The Voc and Isc could be increased greatly only when Voc and Isc of the cell with Pt as WE properly combined with the Voc and Isc produced by chla in the original cell.According to absorption spectra and output characters,the results were elucidated.展开更多
The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intr...The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M.aeruginosa to different concentration gradients of Fe(Ⅲ) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were:(1) decelerated when the Fe(Ⅲ) concentration was lower than 50 μg/L in the solutions,(2) promoted and positively related to the increase of Fe(Ⅲ) concentration from 100 to 500 μg/L in the solutions over the experimental period, and(3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(Ⅲ) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(Ⅲ)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(Ⅲ) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5according to the functions for different Fe(Ⅲ)concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(Ⅲ) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.展开更多
文摘Tetraiodofluorescein(TIF)and safranine T(ST)had great effects on the photovoltaic parameters of the cells.The Voc of the cells was about 3-5 times higher than that of the cells without TIK and ST,Isc increased 1 to 2 orders of magnitude.The Voc and Isc could be increased greatly only when Voc and Isc of the cell with Pt as WE properly combined with the Voc and Isc produced by chla in the original cell.According to absorption spectra and output characters,the results were elucidated.
基金supported by the China National Major Project of Water Pollution Control(No.2012ZX07313001-002)JSPS Postdoctoral Fellow Program(No.P15353)+2 种基金Shaanxi Provincial Program for ScienceTechnology Development(No.2013KJXX-55)Program for Innovative Research Team(No.2013KCT-13)
文摘The impact of Fe concentrations on the growth of Microcystis aeruginosa in aquatic systems under high nitrate and low chlorophyll conditions was studied. The responses of cell density,total and cell chlorophyll-a intracellular Fe content and organic elemental composition of M.aeruginosa to different concentration gradients of Fe(Ⅲ) in the solutions were analysed. The results showed that the proliferation speeds of M. aeruginosa were:(1) decelerated when the Fe(Ⅲ) concentration was lower than 50 μg/L in the solutions,(2) promoted and positively related to the increase of Fe(Ⅲ) concentration from 100 to 500 μg/L in the solutions over the experimental period, and(3) promoted in the early stage but decelerated in later stages by excess adsorption of Fe by cells when the Fe(Ⅲ) concentration was higher than 500 μg/L in the solutions. The maximum cell density, total and cell chlorophyll-a were all observed at 500 μg Fe(Ⅲ)/L concentration. The organic elemental composition of M. aeruginosa was also affected by the concentration of Fe(Ⅲ) in the solutions, and the molecular formula of M. aeruginosa should be expressed as C7–7.5H14O0.8–1.3N3.5–5according to the functions for different Fe(Ⅲ)concentrations. Cell carbon and oxygen content appeared to increase slightly, while cell nitrogen content appeared to decrease as Fe(Ⅲ) concentrations increased from 100 to 500 μg/L in the solutions. This was attributed to the competition of photosynthesis and nitrogen adsorption under varying cell Fe content.