Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization...Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.展开更多
AIM: TO explore the relationship among interferon-γ (IFN-γ) activity, fibrogenesis, T cell immune responses and hepatic inflammatory activity. METHODS: Peripheral blood samples from a total of 43 hepatitis B cir...AIM: TO explore the relationship among interferon-γ (IFN-γ) activity, fibrogenesis, T cell immune responses and hepatic inflammatory activity. METHODS: Peripheral blood samples from a total of 43 hepatitis B cirrhotic patients (LC) and 19 healthy controls (NC) were collected to measure their serum levels of IFN-γ, interleukin-2 (IL-2), soluble interleukin-2 receptor (sIL-2R), interleukin-10 (IL-10) and three serological markers of fibrosis including hyaluronic acid (HA), procollagen type III peptide (PIIIP), and type iV collagen were measured using a double antibody sandwich ELISA. Also, serum total bilirubin (TB) and alanine aminotransferase (ALT) were measured by routine measures. RESULTS: The concentrations of serological markers of fibrosis in patients with active cirrhosis (ALC) were significantly higher than those in stationary liver cirrhosis (SLC) or NC groups. The levels of serological markers in HBeAg-positive patients were significantly higher than those in HBeAg-negative patients. In SLC and ALC patients, a negative linear correlation was found between IFN-γ levels and the serological markers of fibrosis. IFN-γ and IL-2 levels in the ALC group were significantly higher than those in the SLC and NC groups, but the statistical difference was not significant between the latter two. In contrast, IL-10 levels in the SLC group were significantly higher than that in the NC group, but no significant difference was found between SLC and ALC groups. The sIL-2R level was elevated gradually in all these groups, and the differences were significant. Positive linear correlations were seen between IFN-γ activity and ALT levels (r = 0.339, P 〈 0.05), and IL-2 activity and TB levels (r = 0.517, P 〈 0.05). sIL-2R expression was positively correlated with both ALT and TB levels (r = 0.324, 0.455, P 〈 0.05), whereas there was no statistically significant correlation between IL-10 expression and serum ALT and TB levels (r = -0.102, -0.093, P 〉 0.05). Finally, there was a positive correlation between IFN-γ and IL-2 levels. CONCLUSION: T cell immune responses are correlated with fibrosis and hepatic inflammatory activity and may play an important role in liver cirrhosis.展开更多
In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluorescence staining assay to detect changes of the peripheral blood T lym...In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluorescence staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C 3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythrocytic immune function. Results showed that after EA of “Zusanli" (ST 36), CD+ 4, RBC-C 3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CD+ 8 had no any considerable changes and a positive correlation between CD+ 4 and RBC-C 3bRR was found. In immunosuppression model rats, the values of CD+ 4 and RBC-C 3bRR were obviously lower than those of the normal control group while CD+ 8 had no any striking changes; but after EA treatment, there were no evident differences between EA group and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli" (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.展开更多
Objective: To probe into the effect of electroacupuncture (EA)on vascular dementia and red cell immune function in the rat. Methods: 30 SD rats were made into renal hypertension rats(RHR) by clamping the kidney arteri...Objective: To probe into the effect of electroacupuncture (EA)on vascular dementia and red cell immune function in the rat. Methods: 30 SD rats were made into renal hypertension rats(RHR) by clamping the kidney arteries with silver clip. 42 days later, their bilateral common carotid arteries were blocked repeatedly to cause cerebral ischemia. The Hypertension vascular dementia model was then set up. Then they were randomly divided into VD model group, EA groupand medication group (Dihydroergotoxine, DHET), with 10 cases in each group. The therapeutic course was 28 days. The ability of learning and memory was using an obs erved by water maze, and the function of red blood cell immune was detected after treatment. Results: the latecy of the EA group and medication group was shorter than that of model group (P<0.05, P<0.005), and that of EA group was shorter than medication group (P<0.05, P<0.005). EA and medication could increase the RBCC 3b receptor flower circle rate and reduce the RBCIC flower circle rate significantly(P<0.05, P< 0.01). Conclusion: The results indicated that EA therapy could raise the ability of learning and memory and improve the function of red cell immune in VD rats, while the therapeutic effect of EAis better than DHET.展开更多
The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefo...The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.展开更多
Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered ...Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.展开更多
Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflamm...Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.展开更多
BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune ce...BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the crit...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the critical regulators and underlying molecular mechanisms remain largely unknown.AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention.METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide(4NQO)to C57BL/6 mice.Moreover,we established a control group without 4NQO treatment of mice.Then,transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses,including low-grade IN(LGIN),high-grade IN(HGIN),and CA,and controlled normal tissue(NOR)samples.Differentially expressed genes(DEGs)were identified in the LGIN,HGIN,and CA groups,and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.The CIBERSORT algorithm was used to detect the pattern of immune cell infilt-ration.Immunohistochemistry(IHC)was also conducted to validate our results.Finally,the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice.RESULTS Compared with those in the NOR group,a total of 681541,and 840 DEGs were obtained in the LGIN,HGIN,and CA groups,respectively.Using the intersection of the three sets of DEGs,we identified 86 genes as key genes involved in the development of ESCC.Enrichment analysis revealed that these genes were enriched mainly in the keratinization,epidermal cell differentiation,and interleukin(IL)-17 signaling pathways.CIBERSORT analysis revealed that,compared with those in the NOR group,M0 and M1 macrophages in the 4NQO group showed stronger infiltration,which was validated by IHC.Serum cytokine analysis revealed that,compared with those in the NOR group,IL-1βand IL-6 were upregulated,while IL-10 was downregulated in the LGIN,HGIN,and CA groups.Moreover,the expression of the representative key genes,such as S100a8 and Krt6b,was verified in external human samples,and the results of immunohistochemical staining were consistent with the findings in mice.CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions.In addition,we found that macrophage infiltration and abnormal alterations in the levels of inflam-mation-associated cytokines,such as IL-1β,IL-6,and IL-10,in the peripheral blood may be closely associated with the development of ESCC.展开更多
This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is...This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is expected to provide some possible strategies for the research and treatment of ALI and acute respiratory distress syndrome(ARDS).展开更多
BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To ex...BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide,and surgical resection is one of the main ways to treat gastric cancer.However,the immune status of postoperative patients is crucial for ...BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide,and surgical resection is one of the main ways to treat gastric cancer.However,the immune status of postoperative patients is crucial for prognosis and survival,and immune cells play an important role in this process.Therefore,it is helpful to understand the immune status of postoperative patients by evaluating the levels of peripheral blood immune cells,especially total T cells(CD3+),helper T cells(CD3+CD4+),and suppressor T cells(CD3+CD8+),and its relationship to sur-vival.AIM To analyzed the immune cells in peripheral blood of patients with gastric cancer after surgery,detect the levels of total T cells,helper T cells and suppressor T cells.METHODS A total of 58 patients with gastric cancer who received surgical treatment were included in the retrospective study.Flow cytometry was used to detect the level of peripheral blood immune cells and analyze the correlation between total T cells,helper T cells and inhibitory T cells.To explore the relationship between these immune markers and patient survival.RESULTS The results showed that the levels of total T cells,helper T cells,and suppressor T cells changed in patients after gastric cancer surgery.There was a significant positive correlation between total T cells,helper T cells and suppressor T cells(r=0.35,P<0.01;r=0.56,P<0.01).However,there was a negative correlation between helper T cells and suppressor T cells(r=-0.63,P<0.01).Follow-up showed that the survival rate of patients in the high-level total T cell group was significantly higher than that in the low-level group(28.87±24.98 months vs 18.42±16.21 months).The survival curve shows that the curve of patients in the high-level group is shifted to the upper right,and that of the low-level group is shifted downward.There was no significant difference between the levels of helper T cells and suppressor T cells and patient survival time.CONCLUSION By detecting peripheral blood immune cells with flow cytometry,we can initially evaluate the immune status of patients after gastric cancer surgery and initially explore its relationship with patient survival.展开更多
Objective:The aim of this study was to identify biomarkers associated with immunity and prognosis in patients with cervical cancer.Materials and methods:Data from patients with cervical squamous cell carcinoma(CESC)we...Objective:The aim of this study was to identify biomarkers associated with immunity and prognosis in patients with cervical cancer.Materials and methods:Data from patients with cervical squamous cell carcinoma(CESC)were retrieved from the UCSC Xena database and subjected to analysis.Gene sets representing 22 types of immunocytes were acquired,and immunocytes relevant to prognosis were identified.Weighted gene co-expression network analysis(WGCNA)was utilized to identify gene modules associated with prognosis-related immunocytes and to construct immune-related gene markers.Differentially expressed genes were then screened,and the association between immune score and biological function of immune-related gene markers was analyzed.Furthermore,tissue samples from cervical cancer patients in Northeast China were collected to validate the expression of two genes using real-time PCR and immunohistochemistry.Results:This study identified 10 immunocytes significantly correlated with overall survival time in patients.Six gene modules were identified as significantly associated with prognosis-related immunocytes,with gene module 6 showing relevance to all prognosis-related immunocytes.Gene module 6 was related to all prognosis-related immunocytes.Moreover,two genes(including PLA2G2D and CHIT1)were found to be significantly associated with overall survival in cancer patients.Patients with CESC were classified into high and low immune score groups based on the median score of gene markers.Correlation analysis of the immune score and biological function was performed.Immunohistochemistry and real-time PCR results revealed high expression of CHIT1 and PLA2G2D in CESC tumor tissues.Conclusion:PLA2G2D and CHIT1 show promise as biomarkers for evaluating immune infiltration and prognosis in patients with cervical cancer.展开更多
BACKGROUND According to current statistics,renal cancer accounts for 3%of all cancers world-wide.Renal cell carcinoma(RCC)is the most common solid lesion in the kidney and accounts for approximately 90%of all renal ma...BACKGROUND According to current statistics,renal cancer accounts for 3%of all cancers world-wide.Renal cell carcinoma(RCC)is the most common solid lesion in the kidney and accounts for approximately 90%of all renal malignancies.Increasing evi-dence has shown an association between immune infiltration in RCC and clinical outcomes.To discover possible targets for the immune system,we investigated the link between tumor-infiltrating immune cells(TIICs)and the prognosis of RCC.AIM To investigate the effects of 22 TIICs on the prognosis of RCC patients and iden-tify potential therapeutic targets for RCC immunotherapy.METHODS The CIBERSORT algorithm partitioned the 22 TIICs from the Cancer Genome Atlas cohort into proportions.Cox regression analysis was employed to evaluate the impact of 22 TIICs on the probability of developing RCC.A predictive model for immunological risk was developed by analyzing the statistical relationship between the subpopulations of TIICs and survival outcomes.Furthermore,multi-variate Cox regression analysis was used to investigate independent factors for the prognostic prediction of RCC.A value of P<0.05 was regarded as statistically significant.RESULTS Compared to normal tissues,RCC tissues exhibited a distinct infiltration of im-mune cells.An immune risk score model was established and univariate Cox regression analysis revealed a significant association between four immune cell types and the survival risk connected to RCC.High-risk individuals were correlated to poorer outcomes according to the Kaplan-Meier survival curve(P=1E-05).The immunological risk score model was demonstrated to be a dependable predictor of survival risk(area under the curve=0.747)via the receiver operating characteristic curve.According to multivariate Cox regression analysis,the immune risk score model independently predicted RCC patients'prognosis(hazard ratio=1.550,95%CI:1.342–1.791;P<0.001).Finally,we established a nomogram that accurately and comprehensively forecast the survival of patients with RCC.CONCLUSION TIICs play various roles in RCC prognosis.The immunological risk score is an independent predictor of poor survival in kidney cancer cases.展开更多
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease in the United States and other developed countries and is expected to increase in the next few years. Emerging data suggest that some p...Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease in the United States and other developed countries and is expected to increase in the next few years. Emerging data suggest that some patients with NAFLD may progress to nonalcoholic steatohepatitis (NASH), cirrhosis and even hepatocellular carcinoma. NAFLD can also promote the development and progression of disease in other organ systems, such as the cardiovascular and endocrine (i.e. diabetes) systems. Thus, understanding the pathogenesis of NAFLD is of great clinical importance and is critical for the prevention and treatment of the disease. Although the "two-hit hypothesis" is generally accepted, the exact pathogenesis of NAFLD has not been clearly established. The liver is an important innate immune organ with large numbers of innate immune cells, including Kupffer cells (KCs), natural killer T (NKT) cells and natural killer (NK) cells. Recent data show that an imbalance in liver cytokines may be implicated in the development of fatty liver disease. For example, Th1 cytokine excess may be a common pathogenic mechanism for hepatic insulin resistance and NASH. Innate immune cells in the liver play important roles in the excessive production of hepatic Th1 cytokines in NAFLD. In addition, liver innate immune cells participate in the pathogenesis of NAFLD in other ways. For example, activated KCs can generate reactive oxygen species, which induce liver injury. This review will focus primarily on the possible effect and mechanism of KCs, NKT cells and NK cells in the development of NAFLD.展开更多
Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monoc...Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon(IFN)-α and β are generated upon the activation of tolllike receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immunecells in the atherosclerosis.展开更多
The programmed cell death-1(PD-1)/programmed cell death ligand 1(PD-L1)signaling pathway is an important mechanism in tumor immune escape,and expression of PD-L1 on tumor cells has been reported more frequently.Howeve...The programmed cell death-1(PD-1)/programmed cell death ligand 1(PD-L1)signaling pathway is an important mechanism in tumor immune escape,and expression of PD-L1 on tumor cells has been reported more frequently.However,accumulating evidence suggests that PD-1/PD-L1 is also widely expressed on immune cells,and that regulation is also critical for tumor immune responses.In this review,we emphasized that under solid tumor conditions,the immunoregulatory effects of immune cells expressing PD-1 or PD-L1,affected the prognoses of cancer patients.Therefore,a better understanding of the mechanisms that regulate PD-1 or PD-L1 expression on immune cells would provide clear insights into the increased efficacy of anti-PD antibodies and the development of novel tumor immunotherapy strategies.展开更多
Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation(allo-HSCT)has been widely implemented to treat hematologic malignancies.However,graft-versus-host d...Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation(allo-HSCT)has been widely implemented to treat hematologic malignancies.However,graft-versus-host disease(GVHD)and complications of immunosuppressive drugs after allo-HSCT are the main causes of non-relapse mortality and a poor quality of life.In addition,GVHD and infusion-induced toxicity still occur with donor lymphocyte infusions(DLIs)and chimeric antigen receptor(CAR)T-cell therapy.Because of the special immune tolerance characteristics and anti-tumor ability of universal immune cells,universal immune cell therapy may strongly reduce GVHD,while simultaneously reducing tumor burden.Nevertheless,widespread application of universal immune cell therapy is mainly restricted by poor expansion and persistence efficacy.Many strategies have been applied to improve universal immune cell proliferation and persistence efficacy,including the use of universal cell lines,signaling regulation and CAR technology.In this review we have summarized current advances in universal immune cell therapy for hematologic malignancies with a discussion of future perspectives.展开更多
BACKGROUND Immune cells,including neutrophils,natural killer(NK)cells,T cells,NKT cells and macrophages,participate in the progression of acute liver injury and hepatic recovery.To date,there has been no systematic st...BACKGROUND Immune cells,including neutrophils,natural killer(NK)cells,T cells,NKT cells and macrophages,participate in the progression of acute liver injury and hepatic recovery.To date,there has been no systematic study on the quantitative changes in these different immune cells from initial injury to subsequent recovery.AIM To investigate the infiltration changes of various immune cells in acute liver injury models over time,and to study the relationship between the changes in leukocyte cellderived chemotaxin 2(LECT2)and the infiltration of several immune cells.METHODS Carbon tetrachloride-and concanavalin A-induced acute liver injury models were employed to mimic toxin-induced and autoimmune-mediated liver injury respectively.The quantitative changes in various immune cells were monitored at different time points.Serum samples were collected,and liver tissues were harvested.Ly6G,CD161,CD4,CD8 and F4/80 staining were used to indicate neutrophils,NK/NKT cells,CD4^(+)T cells,CD8^(+)T cells and macrophages,respectively.Lect2-KO mice were used to detect the function of LECT2.RESULTS During the injury and repair process,different types of immune cells began to increase,reached their peaks and fell into decline at different time points.Furthermore,when the serum alanine transaminase(ALT)and aspartate transaminase(AST)indices reverted to normal levels 7 d after the injury,the infiltration of immune cells still existed even 14 d after the injury,showing an obvious lag effect.We found that the expression of LECT2 was upregulated in acute liver injury mouse models,and the liver injuries of Lect2-KO mice were less severe than those of wild-type mice.Compared with wild-type mice,Lect2-KO mice had different immune cell infiltration.CONCLUSION The recovery time of immune cells was far behind that of serum ALT and AST during the process of liver repair.LECT2 could regulate monocyte/macrophage chemotaxis and might be used as a therapeutic target for acute liver injury.展开更多
Organ transplant rejection(OTR)is a complex immune reaction involving multiple cells,and it determines graft survival and patient prognosis.At present,most transplant recipients are administered a combination of immun...Organ transplant rejection(OTR)is a complex immune reaction involving multiple cells,and it determines graft survival and patient prognosis.At present,most transplant recipients are administered a combination of immunosuppressive and biological agents to protect them from OTR.However,immunosuppressive agents negatively impact the immune system of the patients,causing them to suffer from serious complications,such as chronic infection and malignant tumors.Therefore,a thorough understanding of the mechanisms involved in immune tolerance and immune rejection with regard to organ transplant(OT)is essential for developing better treatment options and improving patient outcomes.This article reviews the role of immune cells in OTR and organ transplant tolerance(OTT),including the novel cell therapies that are currently under clinical trials for transplant recipients.展开更多
基金appreciation to King Saud University for funding this research through the Researchers Supporting Program number(RSPD2024R918),King Saud University,Riyadh,Saudi Arabia.
文摘Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.
基金Supported by Shanghai Leading Academic Discipline Project,No. Y0205
文摘AIM: TO explore the relationship among interferon-γ (IFN-γ) activity, fibrogenesis, T cell immune responses and hepatic inflammatory activity. METHODS: Peripheral blood samples from a total of 43 hepatitis B cirrhotic patients (LC) and 19 healthy controls (NC) were collected to measure their serum levels of IFN-γ, interleukin-2 (IL-2), soluble interleukin-2 receptor (sIL-2R), interleukin-10 (IL-10) and three serological markers of fibrosis including hyaluronic acid (HA), procollagen type III peptide (PIIIP), and type iV collagen were measured using a double antibody sandwich ELISA. Also, serum total bilirubin (TB) and alanine aminotransferase (ALT) were measured by routine measures. RESULTS: The concentrations of serological markers of fibrosis in patients with active cirrhosis (ALC) were significantly higher than those in stationary liver cirrhosis (SLC) or NC groups. The levels of serological markers in HBeAg-positive patients were significantly higher than those in HBeAg-negative patients. In SLC and ALC patients, a negative linear correlation was found between IFN-γ levels and the serological markers of fibrosis. IFN-γ and IL-2 levels in the ALC group were significantly higher than those in the SLC and NC groups, but the statistical difference was not significant between the latter two. In contrast, IL-10 levels in the SLC group were significantly higher than that in the NC group, but no significant difference was found between SLC and ALC groups. The sIL-2R level was elevated gradually in all these groups, and the differences were significant. Positive linear correlations were seen between IFN-γ activity and ALT levels (r = 0.339, P 〈 0.05), and IL-2 activity and TB levels (r = 0.517, P 〈 0.05). sIL-2R expression was positively correlated with both ALT and TB levels (r = 0.324, 0.455, P 〈 0.05), whereas there was no statistically significant correlation between IL-10 expression and serum ALT and TB levels (r = -0.102, -0.093, P 〉 0.05). Finally, there was a positive correlation between IFN-γ and IL-2 levels. CONCLUSION: T cell immune responses are correlated with fibrosis and hepatic inflammatory activity and may play an important role in liver cirrhosis.
文摘In the present study, the effect of electroacupuncture (EA) on immune system was observed in the rat by using micro- whole blood direct immunofluorescence staining assay to detect changes of the peripheral blood T lymphocyte subgroup and employing red blood cell (RBC) C 3b receptor- yeast rosette test and red blood cell-IC rosette test to analyze erythrocytic immune function. Results showed that after EA of “Zusanli" (ST 36), CD+ 4, RBC-C 3bRR and RBC-ICR in the peripheral blood of the normal rats increased significantly while CD+ 8 had no any considerable changes and a positive correlation between CD+ 4 and RBC-C 3bRR was found. In immunosuppression model rats, the values of CD+ 4 and RBC-C 3bRR were obviously lower than those of the normal control group while CD+ 8 had no any striking changes; but after EA treatment, there were no evident differences between EA group and normal control group in the above-mentioned indexes. There were also no any significant differences between non-acupoint group and normal control group in those indexes. Results suggest that EA of “Zusanli" (ST 36) can raise T cell immune function and RBC adhesion function in both normal rats and immunosuppression model rats, both of which present a positive correlation.
文摘Objective: To probe into the effect of electroacupuncture (EA)on vascular dementia and red cell immune function in the rat. Methods: 30 SD rats were made into renal hypertension rats(RHR) by clamping the kidney arteries with silver clip. 42 days later, their bilateral common carotid arteries were blocked repeatedly to cause cerebral ischemia. The Hypertension vascular dementia model was then set up. Then they were randomly divided into VD model group, EA groupand medication group (Dihydroergotoxine, DHET), with 10 cases in each group. The therapeutic course was 28 days. The ability of learning and memory was using an obs erved by water maze, and the function of red blood cell immune was detected after treatment. Results: the latecy of the EA group and medication group was shorter than that of model group (P<0.05, P<0.005), and that of EA group was shorter than medication group (P<0.05, P<0.005). EA and medication could increase the RBCC 3b receptor flower circle rate and reduce the RBCIC flower circle rate significantly(P<0.05, P< 0.01). Conclusion: The results indicated that EA therapy could raise the ability of learning and memory and improve the function of red cell immune in VD rats, while the therapeutic effect of EAis better than DHET.
基金supported by the National Key Research and Development Program,China(Grant Nos.:2021YFC2101500 and 2021YFC2103900)the National Natural Science Foundation of China(Grant Nos.:22278335 and 21978236)the Natural Science Basic Research Program of Shaanxi,China(Grant No.:2023-JC-JQ-17).
文摘The gut microbiota plays a pivotal role in the immunomodulatory and protumorigenic microenvironment of colorectal cancer(CRC).However,the effect of ginsenoside Rk3(Rk3)on CRC and gut microbiota remains unclear.Therefore,the purpose of this study is to explore the potential effect of Rk3 on CRC from the perspective of gut microbiota and immune regulation.Our results reveal that treatment with Rk3 significantly suppresses the formation of colon tumors,repairs intestinal barrier damage,and regulates the gut microbiota imbalance caused by CRC,including enrichment of probiotics such as Akkermansia muciniphila and Barnesiella intestinihominis,and clearance of pathogenic Desulfovibrio.Subsequent metabolomics data demonstrate that Rk3 can modulate the metabolism of amino acids and bile acids,particularly by upregulating glutamine,which has the potential to regulate the immune response.Furthermore,we elucidate the regulatory effects of Rk3 on chemokines and inflammatory factors associated with group 3 innate lymphoid cells(ILC3s)and T helper 17(Th17)signaling pathways,which inhibits the hyperactivation of the Janus kinase-signal transducer and activator of transcription 3(JAK-STAT3)signaling pathway.These results indicate that Rk3 modulates gut microbiota,regulates ILC3s immune response,and inhibits the JAK-STAT3 signaling pathway to suppress the development of colon tumors.More importantly,the results of fecal microbiota transplantation suggest that the inhibitory effect of Rk3 on colon tumors and its regulation of ILC3 immune responses are mediated by the gut microbiota.In summary,these findings emphasize that Rk3 can be utilized as a regulator of the gut microbiota for the prevention and treatment of CRC.
基金partially supported by the Natural Science Foundation of Zhejiang Province(Award number:D21C170001)the National Natural Science Foundation of China(Award number:31973000)。
文摘Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
基金supported by grants from the Major Program of National Key Research and Development Project,Nos.2020YFA0112600(to ZH)the National Natural Science Foundation of China,No.82171270(to ZL)+5 种基金Public Service Platform for Artificial Intelligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People’s Republic of China,No.2020-0103-3-1(to ZL)the Natural Science Foundation of Beijing,No.Z200016(to ZL)Beijing Talents Project,No.2018000021223ZK03(to ZL)Beijing Municipal Committee of Science and Technology,No.Z201100005620010(to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029(to YW)Shanghai Engineering Research Center of Stem Cells Translational Medicine,No.20DZ2255100(to ZH).
文摘Ischemic stroke is a leading cause of death and disability worldwide,with an increasing trend and tendency for onset at a younger age.China,in particular,bears a high burden of stroke cases.In recent years,the inflammatory response after stroke has become a research hotspot:understanding the role of inflammatory response in tissue damage and repair following ischemic stroke is an important direction for its treatment.This review summarizes several major cells involved in the inflammatory response following ischemic stroke,including microglia,neutrophils,monocytes,lymphocytes,and astrocytes.Additionally,we have also highlighted the recent progress in various treatments for ischemic stroke,particularly in the field of stem cell therapy.Overall,understanding the complex interactions between inflammation and ischemic stroke can provide valuable insights for developing treatment strategies and improving patient outcomes.Stem cell therapy may potentially become an important component of ischemic stroke treatment.
基金Supported by Program of Shanghai Academic Research Leader,No.22XD1404800.
文摘BACKGROUND Intrahepatic cholangiocarcinoma(ICC)is a malignant liver tumor that is challenging to treat and manage and current prognostic models for the disease are inefficient or ineffective.Tumor-associated immune cells are critical for tumor development and progression.The main goal of this study was to establish models based on tumor-associated immune cells for predicting the overall survival of patients undergoing surgery for ICC.AIM To establish 1-year and 3-year prognostic models for ICC after surgical resection.METHODS Immunohistochemical staining was performed for CD4,CD8,CD20,pan-cytokeratin(CK),and CD68 in tumors and paired adjacent tissues from 141 patients with ICC who underwent curative surgery.Selection of variables was based on regression diagnostic procedures and goodness-of-fit tests(PH assumption).Clinical parameters and pathological diagnoses,combined with the distribution of immune cells in tumors and paired adjacent tissues,were utilized to establish 1-and 3-year prognostic models.RESULTS This is an important application of immune cells in the tumor microenvironment.CD4,CD8,CD20,and CK were included in the establishment of our prognostic model by stepwise selection,whereas CD68 was not significantly associated with the prognosis of ICC.By integrating clinical data associated with ICC,distinct prognostic models were derived for 1-and 3-year survival outcomes using variable selection.The 1-year prediction model yielded a C-index of 0.7695%confidence interval(95%CI):0.65-0.87 and the 3-year prediction model produced a C-index of 0.69(95%CI:0.65-0.73).Internal validation yielded a C-index of 0.761(95%CI:0.669-0.853)for the 1-year model and 0.693(95%CI:0.642-0.744)for the 3-year model.CONCLUSION We developed Cox regression models for 1-year and 3-year survival predictions of patients with ICC who underwent resection,which has positive implications for establishing a more comprehensive prognostic model for ICC based on tumor immune microenvironment and immune cell changes in the future.
基金Supported by National Natural Foundation of China,No.821742232019 Chinese and Western Medicine Clinical Collaborative Capacity Building Project for Major Difficult Diseases,No.2019-ZX-005。
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the critical regulators and underlying molecular mechanisms remain largely unknown.AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention.METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide(4NQO)to C57BL/6 mice.Moreover,we established a control group without 4NQO treatment of mice.Then,transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses,including low-grade IN(LGIN),high-grade IN(HGIN),and CA,and controlled normal tissue(NOR)samples.Differentially expressed genes(DEGs)were identified in the LGIN,HGIN,and CA groups,and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.The CIBERSORT algorithm was used to detect the pattern of immune cell infilt-ration.Immunohistochemistry(IHC)was also conducted to validate our results.Finally,the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice.RESULTS Compared with those in the NOR group,a total of 681541,and 840 DEGs were obtained in the LGIN,HGIN,and CA groups,respectively.Using the intersection of the three sets of DEGs,we identified 86 genes as key genes involved in the development of ESCC.Enrichment analysis revealed that these genes were enriched mainly in the keratinization,epidermal cell differentiation,and interleukin(IL)-17 signaling pathways.CIBERSORT analysis revealed that,compared with those in the NOR group,M0 and M1 macrophages in the 4NQO group showed stronger infiltration,which was validated by IHC.Serum cytokine analysis revealed that,compared with those in the NOR group,IL-1βand IL-6 were upregulated,while IL-10 was downregulated in the LGIN,HGIN,and CA groups.Moreover,the expression of the representative key genes,such as S100a8 and Krt6b,was verified in external human samples,and the results of immunohistochemical staining were consistent with the findings in mice.CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions.In addition,we found that macrophage infiltration and abnormal alterations in the levels of inflam-mation-associated cytokines,such as IL-1β,IL-6,and IL-10,in the peripheral blood may be closely associated with the development of ESCC.
基金Yunnan Fundamental Research Projects(202201AU070167&202301AT070258),and the Yunnan Key Laboratory of Formulated Granules(202105AG070014).
文摘This review outlines the effects of different types of cells with immune function on acute lung injury(ALI)inflammation and the regulation of inflammatory responses between these cells via cell-cell interactions.It is expected to provide some possible strategies for the research and treatment of ALI and acute respiratory distress syndrome(ARDS).
基金Supported by National Natural Science Foundation of China,No.82300347Natural Science Foundation of Ningbo,No.2021J296Science Foundation of Lihuili Hospital,No.2022ZD004.
文摘BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors worldwide,and surgical resection is one of the main ways to treat gastric cancer.However,the immune status of postoperative patients is crucial for prognosis and survival,and immune cells play an important role in this process.Therefore,it is helpful to understand the immune status of postoperative patients by evaluating the levels of peripheral blood immune cells,especially total T cells(CD3+),helper T cells(CD3+CD4+),and suppressor T cells(CD3+CD8+),and its relationship to sur-vival.AIM To analyzed the immune cells in peripheral blood of patients with gastric cancer after surgery,detect the levels of total T cells,helper T cells and suppressor T cells.METHODS A total of 58 patients with gastric cancer who received surgical treatment were included in the retrospective study.Flow cytometry was used to detect the level of peripheral blood immune cells and analyze the correlation between total T cells,helper T cells and inhibitory T cells.To explore the relationship between these immune markers and patient survival.RESULTS The results showed that the levels of total T cells,helper T cells,and suppressor T cells changed in patients after gastric cancer surgery.There was a significant positive correlation between total T cells,helper T cells and suppressor T cells(r=0.35,P<0.01;r=0.56,P<0.01).However,there was a negative correlation between helper T cells and suppressor T cells(r=-0.63,P<0.01).Follow-up showed that the survival rate of patients in the high-level total T cell group was significantly higher than that in the low-level group(28.87±24.98 months vs 18.42±16.21 months).The survival curve shows that the curve of patients in the high-level group is shifted to the upper right,and that of the low-level group is shifted downward.There was no significant difference between the levels of helper T cells and suppressor T cells and patient survival time.CONCLUSION By detecting peripheral blood immune cells with flow cytometry,we can initially evaluate the immune status of patients after gastric cancer surgery and initially explore its relationship with patient survival.
基金This work was supported by the Haiyan Foundation Youth Project JJQN2022-12.
文摘Objective:The aim of this study was to identify biomarkers associated with immunity and prognosis in patients with cervical cancer.Materials and methods:Data from patients with cervical squamous cell carcinoma(CESC)were retrieved from the UCSC Xena database and subjected to analysis.Gene sets representing 22 types of immunocytes were acquired,and immunocytes relevant to prognosis were identified.Weighted gene co-expression network analysis(WGCNA)was utilized to identify gene modules associated with prognosis-related immunocytes and to construct immune-related gene markers.Differentially expressed genes were then screened,and the association between immune score and biological function of immune-related gene markers was analyzed.Furthermore,tissue samples from cervical cancer patients in Northeast China were collected to validate the expression of two genes using real-time PCR and immunohistochemistry.Results:This study identified 10 immunocytes significantly correlated with overall survival time in patients.Six gene modules were identified as significantly associated with prognosis-related immunocytes,with gene module 6 showing relevance to all prognosis-related immunocytes.Gene module 6 was related to all prognosis-related immunocytes.Moreover,two genes(including PLA2G2D and CHIT1)were found to be significantly associated with overall survival in cancer patients.Patients with CESC were classified into high and low immune score groups based on the median score of gene markers.Correlation analysis of the immune score and biological function was performed.Immunohistochemistry and real-time PCR results revealed high expression of CHIT1 and PLA2G2D in CESC tumor tissues.Conclusion:PLA2G2D and CHIT1 show promise as biomarkers for evaluating immune infiltration and prognosis in patients with cervical cancer.
基金Supported by The Medical Scientific Research Project of the Jiangsu Health Commission,China,No.M2020055The Nanjing Medical Science and Technology Development Project,China,No.YKK22130The Postgraduate Research and Practice Innovation Program of Jiangsu Province,China,No.KYCX23_2105.
文摘BACKGROUND According to current statistics,renal cancer accounts for 3%of all cancers world-wide.Renal cell carcinoma(RCC)is the most common solid lesion in the kidney and accounts for approximately 90%of all renal malignancies.Increasing evi-dence has shown an association between immune infiltration in RCC and clinical outcomes.To discover possible targets for the immune system,we investigated the link between tumor-infiltrating immune cells(TIICs)and the prognosis of RCC.AIM To investigate the effects of 22 TIICs on the prognosis of RCC patients and iden-tify potential therapeutic targets for RCC immunotherapy.METHODS The CIBERSORT algorithm partitioned the 22 TIICs from the Cancer Genome Atlas cohort into proportions.Cox regression analysis was employed to evaluate the impact of 22 TIICs on the probability of developing RCC.A predictive model for immunological risk was developed by analyzing the statistical relationship between the subpopulations of TIICs and survival outcomes.Furthermore,multi-variate Cox regression analysis was used to investigate independent factors for the prognostic prediction of RCC.A value of P<0.05 was regarded as statistically significant.RESULTS Compared to normal tissues,RCC tissues exhibited a distinct infiltration of im-mune cells.An immune risk score model was established and univariate Cox regression analysis revealed a significant association between four immune cell types and the survival risk connected to RCC.High-risk individuals were correlated to poorer outcomes according to the Kaplan-Meier survival curve(P=1E-05).The immunological risk score model was demonstrated to be a dependable predictor of survival risk(area under the curve=0.747)via the receiver operating characteristic curve.According to multivariate Cox regression analysis,the immune risk score model independently predicted RCC patients'prognosis(hazard ratio=1.550,95%CI:1.342–1.791;P<0.001).Finally,we established a nomogram that accurately and comprehensively forecast the survival of patients with RCC.CONCLUSION TIICs play various roles in RCC prognosis.The immunological risk score is an independent predictor of poor survival in kidney cancer cases.
基金Supported by Beijing Municipal Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
文摘Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease in the United States and other developed countries and is expected to increase in the next few years. Emerging data suggest that some patients with NAFLD may progress to nonalcoholic steatohepatitis (NASH), cirrhosis and even hepatocellular carcinoma. NAFLD can also promote the development and progression of disease in other organ systems, such as the cardiovascular and endocrine (i.e. diabetes) systems. Thus, understanding the pathogenesis of NAFLD is of great clinical importance and is critical for the prevention and treatment of the disease. Although the "two-hit hypothesis" is generally accepted, the exact pathogenesis of NAFLD has not been clearly established. The liver is an important innate immune organ with large numbers of innate immune cells, including Kupffer cells (KCs), natural killer T (NKT) cells and natural killer (NK) cells. Recent data show that an imbalance in liver cytokines may be implicated in the development of fatty liver disease. For example, Th1 cytokine excess may be a common pathogenic mechanism for hepatic insulin resistance and NASH. Innate immune cells in the liver play important roles in the excessive production of hepatic Th1 cytokines in NAFLD. In addition, liver innate immune cells participate in the pathogenesis of NAFLD in other ways. For example, activated KCs can generate reactive oxygen species, which induce liver injury. This review will focus primarily on the possible effect and mechanism of KCs, NKT cells and NK cells in the development of NAFLD.
文摘Atherosclerosis is a chronic inflammatory disease arising from lipids, specifically low-density lipoproteins, and leukocytes. Following the activation of endothelium with the expression of adhesion molecules and monocytes, inflammatory cytokines from macrophages, and plasmacytoid dendritic cells, high levels of interferon(IFN)-α and β are generated upon the activation of tolllike receptor-9, and T-cells, especially the ones with Th1 profile, produce pro-inflammatory mediators such as IFN-γ and upregulate macrophages to adhere to the endothelium and migrate into the intima. This review presents an exhaustive account for the role of immunecells in the atherosclerosis.
基金This work was supported by grants from the National Natural Science Foundation of China(Grant Nos.81974416 and 81872166)the Key Project of Tianjin Health Industry(Grant No.15KG145).
文摘The programmed cell death-1(PD-1)/programmed cell death ligand 1(PD-L1)signaling pathway is an important mechanism in tumor immune escape,and expression of PD-L1 on tumor cells has been reported more frequently.However,accumulating evidence suggests that PD-1/PD-L1 is also widely expressed on immune cells,and that regulation is also critical for tumor immune responses.In this review,we emphasized that under solid tumor conditions,the immunoregulatory effects of immune cells expressing PD-1 or PD-L1,affected the prognoses of cancer patients.Therefore,a better understanding of the mechanisms that regulate PD-1 or PD-L1 expression on immune cells would provide clear insights into the increased efficacy of anti-PD antibodies and the development of novel tumor immunotherapy strategies.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1103300)the National Natural Science Foundation of China(Grant No.82020108004)+3 种基金the Natural Science Foundation of Chongqing Innovation Group Science Program(Grant No.cstc2021jcyjcxttX0001)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX1060)the Special Project for Talent Construction in Xinqiao Hospital(Grant No.2022XKRC001)the National College Student Innovation and Entrepreneurship Training Program(Grant No.202190035001).
文摘Many patients have achieved a favorable overall survival rate since allogenic hematopoietic stem cell transplantation(allo-HSCT)has been widely implemented to treat hematologic malignancies.However,graft-versus-host disease(GVHD)and complications of immunosuppressive drugs after allo-HSCT are the main causes of non-relapse mortality and a poor quality of life.In addition,GVHD and infusion-induced toxicity still occur with donor lymphocyte infusions(DLIs)and chimeric antigen receptor(CAR)T-cell therapy.Because of the special immune tolerance characteristics and anti-tumor ability of universal immune cells,universal immune cell therapy may strongly reduce GVHD,while simultaneously reducing tumor burden.Nevertheless,widespread application of universal immune cell therapy is mainly restricted by poor expansion and persistence efficacy.Many strategies have been applied to improve universal immune cell proliferation and persistence efficacy,including the use of universal cell lines,signaling regulation and CAR technology.In this review we have summarized current advances in universal immune cell therapy for hematologic malignancies with a discussion of future perspectives.
基金Supported by the National Key R&D Program of ChinaNo. 2018YFA0108200 and No. 2018YFC1106400+5 种基金the National Natural Science Foundation of ChinaNo. 31972926, No. 32000607, No. 82270645 and No. 92068206Guangdong Basic and Applied Basic Research FoundationNo. 2020A1515111111 and No. 2019A1515110145China Postdoctoral Science FoundationNo. 2019M660205
文摘BACKGROUND Immune cells,including neutrophils,natural killer(NK)cells,T cells,NKT cells and macrophages,participate in the progression of acute liver injury and hepatic recovery.To date,there has been no systematic study on the quantitative changes in these different immune cells from initial injury to subsequent recovery.AIM To investigate the infiltration changes of various immune cells in acute liver injury models over time,and to study the relationship between the changes in leukocyte cellderived chemotaxin 2(LECT2)and the infiltration of several immune cells.METHODS Carbon tetrachloride-and concanavalin A-induced acute liver injury models were employed to mimic toxin-induced and autoimmune-mediated liver injury respectively.The quantitative changes in various immune cells were monitored at different time points.Serum samples were collected,and liver tissues were harvested.Ly6G,CD161,CD4,CD8 and F4/80 staining were used to indicate neutrophils,NK/NKT cells,CD4^(+)T cells,CD8^(+)T cells and macrophages,respectively.Lect2-KO mice were used to detect the function of LECT2.RESULTS During the injury and repair process,different types of immune cells began to increase,reached their peaks and fell into decline at different time points.Furthermore,when the serum alanine transaminase(ALT)and aspartate transaminase(AST)indices reverted to normal levels 7 d after the injury,the infiltration of immune cells still existed even 14 d after the injury,showing an obvious lag effect.We found that the expression of LECT2 was upregulated in acute liver injury mouse models,and the liver injuries of Lect2-KO mice were less severe than those of wild-type mice.Compared with wild-type mice,Lect2-KO mice had different immune cell infiltration.CONCLUSION The recovery time of immune cells was far behind that of serum ALT and AST during the process of liver repair.LECT2 could regulate monocyte/macrophage chemotaxis and might be used as a therapeutic target for acute liver injury.
基金supported by grants from the National Natural Science Foundation of China(81971495 and 91442117)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-035)+2 种基金the National Science Foundation of Jiangsu Province(BRA2017533 and BK20191490)the State Key Laboratory of Reproductive Medicine(SKLRM-K202001)the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials。
文摘Organ transplant rejection(OTR)is a complex immune reaction involving multiple cells,and it determines graft survival and patient prognosis.At present,most transplant recipients are administered a combination of immunosuppressive and biological agents to protect them from OTR.However,immunosuppressive agents negatively impact the immune system of the patients,causing them to suffer from serious complications,such as chronic infection and malignant tumors.Therefore,a thorough understanding of the mechanisms involved in immune tolerance and immune rejection with regard to organ transplant(OT)is essential for developing better treatment options and improving patient outcomes.This article reviews the role of immune cells in OTR and organ transplant tolerance(OTT),including the novel cell therapies that are currently under clinical trials for transplant recipients.