期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
1
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells Tandem solar cells Buffer layer Stability
下载PDF
Role of self-assembled molecules’anchoring groups for surface defect passivation and dipole modulation in inverted perovskite solar cells
2
作者 Xiaoyu Wang Muhammad Faizan +3 位作者 Kun Zhou Xinjiang Wang Yuhao Fu Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期108-115,共8页
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b... Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells. 展开更多
关键词 inverted perovskite solar cell defect passivation self-assembled molecule interface engineering first-principles calculation
下载PDF
Fast and Balanced Charge Transport Enabled by Solution-Processed Metal Oxide Layers for Efficient and Stable Inverted Perovskite Solar Cells
3
作者 Jing Zhang James Mcgettrick +11 位作者 Kangyu Ji Jinxin Bi Thomas Webb Xueping Liu Dongtao Liu Aobo Ren Yuren Xiang Bowei Li Vlad Stolojan Trystan Watson Samuel D.Stranks Wei Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期240-248,共9页
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol... Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability. 展开更多
关键词 fast and balanced charge transfer inverted perovskite solar cells long-term stability low-temperature processing metal oxides
下载PDF
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
4
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
High-Performance and Large-Area Inverted Perovskite Solar Cells Based on NiO_(x) Films Enabled with A Novel Microstructure-Control Technology
5
作者 Guibin Shen Xin Li +7 位作者 Yuqin Zou Hongye Dong Dongping Zhu Yanglin Jiang Xin Ren Ng Fen Lin Peter Müller-Buschbaum Cheng Mu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期153-159,共7页
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ... The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells. 展开更多
关键词 interfacial contact inverted and large-area perovskite solar cells photovoltaic materials porous NiO_(x)films renewable energy
下载PDF
Intensification of Power Quality Using PMSG and Cascaded Multi Cell Trans-Z-Source Inverter 被引量:1
6
作者 E. Rajendran Dr. C. Kumar Dr. P. Suresh 《Circuits and Systems》 2016年第11期3778-3793,共17页
This script depicts the power quality intensification of Wind Energy Transfer System (WETS) using Permanent Magnet Synchronous Generator (PMSG) and Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI). The PMSG knock... This script depicts the power quality intensification of Wind Energy Transfer System (WETS) using Permanent Magnet Synchronous Generator (PMSG) and Cascaded Multi Cell Trans-Z-Source Inverter (CMCTZSI). The PMSG knocks the induction generator and earlier generators, because of their stimulating performances without taking the frame power. The Trans-Z-Source Inverter with one transformer and one capacitor is connected newly. To increase the boosting ratio gratuity a cascaded impression is proposed with adopting multi-winding transformer which provides an option for this manuscript to use coupled inductor as an alternative of multi-winding transformer and remains the matching voltage gain as cascaded multi cell trans-Z- source inverter. Accordingly the parallel capacitances are also balancing the voltage gain. The parallel correlation of the method is essentially to trim down the voltage stresses and to improve the input current gain of the inverter. By using MALAB Simulation, harmonics can be reduced up to 1.32% and also DC side can be boosted up our required level 200 - 1000 V achievable. The new hardware setup results demonstrate to facilitate the multi cell Trans Z-source inverter. This can be generated high-voltage gain [50 V - 1000 V] and also be credible. Moreover, the level of currents, voltages and Harmonics on the machinery is low. 展开更多
关键词 Neuro Fuzzy system (NFS) Permanent Magnet Synchronous Generator (PMSG) Cascaded Multi cell Trans-Z-Source inverter (CMCTZSI) Wind Energy Transfer system (WETS)
下载PDF
Ecofriendly Hydroxyalkyl Cellulose Additives for Efficient and Stable MAPbI_(3)-Based Inverted Perovskite Solar Cells 被引量:1
7
作者 Xuefeng Zhu Rui Lin +5 位作者 Hao Gu Huichao Hu Zheng Liu Guichuan Xing Yibing Wu Xinhua Ouyang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期251-259,共9页
Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficienc... Perovskite solar cells(PSCs)have been demonstrated to be one of the most promising technologies in the field of renewable energy.However,the presence of the defects in the perovskite films greatly limits the efficiency and the stability of the PSCs.The additive engineering is one of the most effective approaches to overcome this problem.Most of the successful additives are extracted from the petroleum-based materials,while the research on the biomass-based additives is still lagging behind.In this paper,two ecofriendly hydroxyalkyl cellulose additives,i.e.,hydroxyethyl cellulose(HEC)and hydroxylpropyl cellulose(HPC),are investigated on the performance of the MAPbl_(3)-based inverted PSCs.Due to the strong interaction between the hydroxyl groups of the cellulose and the divalent cations of the perovskite,these additives enhance the crystal grain orientation and significantly repair the defects of the perovskite films.Working as the additives,these two cellulose derivatives show a strong passivation ability,which significantly reduces the trap density and improves the optoelectronic feature of the PSCs.Compared with the average power conversion efficiency(PCE)of the control device(19.19%),an enhancement of~10%is achieved after the addition of HEC.The optimized device(PCE=21.25%)with a long-term stability(10:80 h,PCE=20.93%)is achieved by the incorporation of the HEC additives into the precursor solution.It is the best performance among the PSCs with the cellulose additives up to now.This research provides a novel choice to develop a cost-effective and renewable additive for the PSCs with high efficiency and excellent long-term stability. 展开更多
关键词 ADDITIVES hydroxyalkyl cellulose inverted perovskite solar cells MAPbl_(3)
下载PDF
Recent progress of inverted organic-inorganic halide perovskite solar cells 被引量:1
8
作者 Dongyang Li Yulan Huang +4 位作者 Zhiwei Ren Abbas Amini Aleksandra B.Djurišic Chun Cheng Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期168-191,共24页
In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide ... In recent years,inverted perovskite solar cells(IPSCs)have attracted significant attention due to their low-temperature and cost-effective fabrication processes,hysteresis-free properties,excellent stability,and wide application.The efficiency gap between IPSCs and regular structures has shrunk to less than 1%.Over the past few years,IPSC research has mainly focused on optimizing power conversion efficiency to accelerate the development of IPSCs.This review provides an overview of recent improvements in the efficiency of IPSCs,including interface engineering and novel film production techniques to overcome critical obstacles.Tandem and integrated applications of IPSCs are also summarized.Furthermore,prospects for further development of IPSCs are discussed,including the development of new materials,methods,and device structures for novel IPSCs to meet the requirements of commercialization. 展开更多
关键词 Inverted perovskite solar cells Interface engineering Additive engineering Tandem solar cells Integrated solar cells
下载PDF
Thermally Evaporated ZnSe for Efficient and Stable Regular/Inverted Perovskite Solar Cells by Enhanced Electron Extraction 被引量:1
9
作者 Xin Li Guibin Shen +6 位作者 Xin Ren Ng Zhiyong Liu Yun Meng Yongwei Zhang Cheng Mu Zhi Gen Yu Fen Lin 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期440-448,共9页
Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both l... Electron transport layers(ETLs)are crucial for achieving efficient and stable planar perovskite solar cells(PSCs).Reports on versatile inorganic ETLs using a simple film fabrication method and applicability for both low-cost planar regular and inverted PSCs with excellent efficiencies(>22%)and high stability are very limited.Herein,we employ a novel inorganic ZnSe as ETL for both regular and inverted PSCs to improve the efficiency and stability using a simple thermal evaporation method.The TiO_(2)-ZnSe-FAPbl_(3)heterojunction could be formed,resulting in an improved charge collection and a decreased carrier recombination further proved through theoretical calculations.The optimized regular PSCs based on TiO_(2)/ZnSe have achieved 23.25%efficiency with negligible hysteresis.In addition,the ZnSe ETL can also effectively replace the unstable bathocuproine(BCP)in inverted PSCs.Consequently,the ZnSe-based inverted device realizes a champion efficiency of 22.54%.Moreover,the regular device comprising the TiO_(2)/ZnSe layers retains 92%of its initial PCE after 10:00 h under 1 Sun continuous illumination and the inverted device comprising the C_(60)/ZnSe layers maintains over 85%of its initial PCE at 85℃for 10:00 h.This highlights one of the best results among universal ETLs in both regular and inverted perovskite photovoltaics. 展开更多
关键词 high efficiency long-term stability planar regular/inverted perovskite solar cells thermal evaporation ZnSe electron transport layer
下载PDF
Hole‑Transport Management Enables 23%‑Efficient and Stable Inverted Perovskite Solar Cells with 84%Fill Factor
10
作者 Liming Liu Yajie Ma +7 位作者 Yousheng Wang Qiaoyan Ma Zixuan Wang Zigan Yang Meixiu Wan Tahmineh Mahmoudi Yoon‑Bong Hahn Yaohua Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期154-166,共13页
NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interf... NiO_(x)-based inverted perovskite solar cells(PSCs)havepresented great potential toward low-cost,highly efficient and stablenext-generation photovoltaics.However,the presence of energy-levelmismatch and contact-interface defects between hole-selective contacts(HSCs)and perovskite-active layer(PAL)still limits device efficiencyimprovement.Here,we report a graded configuration based on bothinterface-cascaded structures and p-type molecule-doped compositeswith two-/three-dimensional formamidinium-based triple-halideperovskites.We find that the interface defects-induced non-radiativerecombination presented at HSCs/PAL interfaces is remarkably suppressedbecause of efficient hole extraction and transport.Moreover,astrong chemical interaction,halogen bonding and coordination bondingare found in the molecule-doped perovskite composites,whichsignificantly suppress the formation of halide vacancy and parasitic metallic lead.As a result,NiO_(x)-based inverted PSCs present a power-conversion-efficiency over 23%with a high fill factor of 0.84 and open-circuit voltage of 1.162 V,which are comparable to the best reported around 1.56-electron volt bandgap perovskites.Furthermore,devices with encapsulation present high operational stability over 1,200 h during T_(90) lifetime measurement(the time as a function of PCE decreases to 90%of its initial value)under 1-sun illumination in ambient-air conditions. 展开更多
关键词 Inverted NiO_(x)-based perovskite solar cells Hole-transport management Interface-induced defect passivation High performance and stability
下载PDF
Doping PCBM with fullerene phosphinate derivatives enhances the interface energy alignment and synergistic passivation capability
11
作者 Chengrong Wang Ling Liao +5 位作者 Lisheng Fan Wenqi Ge Bing Fan Qi Huang Rufang Peng Bo Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期656-662,共7页
Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-per... Phenyl-C_(61)-butyric acid methyl ester(PCBM) serves as a common electron transport layer(ETL) in inverted p-i-n structure perovskite solar cells(IPSCs),yet energy barriers and insufficient passivation at the PCBM-perovskite interface hinder device effectiveness and durability.In this study,we present a series of novel Fullerene Phenylacid Ester Derivatives(FPEDs:FPP,FTPP,FDPP) incorporated into PCBM.Our investigations illustrate that FPEDs effectively act to passivate the perovskite surface by forming robust interactions with uncoordinated Pb^(2+) ions via the phosphine oxide groups present in their molecular structures,thereby enhancing the stability of the devices.Moreover,these additives elevate the energy level of the lowest unoccupied molecular orbital(LUMO) of ETL,diminish the electron injection barrier,and enhance the efficiency of interlayer electron transport.Incorporating FPEDs enhances ETL coverage on the perovskite layer,reducing leakage current significantly.Notably,Devices with PCBM/FTPP achieved a peak PCE of 23.62% and showed superior stability,maintaining 96,8% of the initial PCE after 500 h,while control devices retained merely 80.7% over the same period. 展开更多
关键词 Inverted perovskite solar cells Fullerene Phosphonic Esters Synergistic Passivation Energy Level Matching
下载PDF
Efficient and Stable Inverted Perovskite Solar Modules Enabled by Solid-Liquid Two-Step Film Formation
12
作者 Juan Zhang Xiaofei Ji +13 位作者 Xiaoting Wang Liujiang Zhang Leyu Bi Zhenhuang Su Xingyu Gao Wenjun Zhang Lei Shi Guoqing Guan Abuliti Abudula Xiaogang Hao Liyou Yang Qiang Fu Alex K.‑Y.Jen Linfeng Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期571-582,共12页
A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the mai... A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells.The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs.In this work,we adopted a solid-liquid two-step film formation technique,which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films.This method possesses the advantages of integrating vapor deposition and solution methods,which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform,large-area perovskite film.Furthermore,modification of the NiO_(x)/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization.As a result,a large-area perovskite film possessing larger grains,fewer pinholes,and reduced defects could be achieved.The inverted PSM with an active area of 61.56 cm^(2)(10×10 cm^(2)substrate)achieved a champion power conversion efficiency of 20.56%and significantly improved stability.This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication. 展开更多
关键词 Inverted perovskite solar cells Perovskite solar modules Two-step film formation CRYSTALLIZATION Defect passivation
下载PDF
Effective Surface Treatment for High‑Performance Inverted CsPbI2Br Perovskite Solar Cells with Efficiency of 15.92% 被引量:2
13
作者 Sheng Fu Xiaodong Li +3 位作者 Li Wan Wenxiao Zhang Weijie Song Junfeng Fang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期133-145,共13页
Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the ... Developing high-efficiency and stable inverted CsPbI2Br perovskite solar cells is vitally urgent for their unique advantages of removing adverse dopants and compatible process with tandem cells in comparison with the regular.However,relatively low opening circuit voltage(Voc)and limited moisture stability have lagged their progress far from the regular.Here,we propose an effective surface treatment strategy with high-temperature FABr treatment to address these issues.The induced ions exchange can not only adjust energy level,but also gift effective passivation.Meanwhile,the gradient distribution of FA+can accelerate the carriers transport to further suppress bulk recombination.Besides,the Br-rich surface and FA+substitution can isolate moisture erosions.As a result,the optimized devices show champion efficiency of 15.92%with Voc of 1.223 V.In addition,the tolerance of humidity and operation get significant promotion:maintaining 91.7%efficiency after aged at RH 20%ambient condition for 1300 h and 81.8%via maximum power point tracking at 45°C for 500 h in N2.Furthermore,the unpackaged devices realize the rare reported air operational stability and,respectively,remain almost efficiency(98.9%)after operated under RH 35%for 600 min and 91.2%under RH 50%for 300 min. 展开更多
关键词 CsPbI2Br Inverted perovskite solar cells Effective passivation Voc loss Stability
下载PDF
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:2
14
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO_2 nanotubes 被引量:1
15
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh Hamed Fatehy 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期320-324,共5页
An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient c... An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (Rs) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls. 展开更多
关键词 inverted polymer solar cells TiO2 nanotubes electrochemical-anodizing doctor blading
下载PDF
Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer 被引量:1
16
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh +1 位作者 Samaneh Ghazanfarpour Mohammad Khanzadeh 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期406-410,共5页
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex... We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths. 展开更多
关键词 inverted polymer solar cells electron transport layer vanadium-doped TiO2 thin films solvothermal
下载PDF
Multiple methoxy-substituted hole transporter for inverted perovskite solar cells
17
作者 Wei Yu Sajjad Ahmad +5 位作者 Hengkai Zhang Zhiliang Chen Qing Yang Xin Guo Can Li Gang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期127-131,共5页
Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lo... Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lower power conversion efficiency(PCE)and inferior reproducibility than conventional PSCs limit further developments.These problems are largely determined by the hole transporting layer(HTL)and the quality of the upper perovskite film[6-8];in particular,the latter is considerably influenced by the surface property of the underlying HTL. 展开更多
关键词 Multiple methoxy-substituted Wettability Small molecule Hole transporting layer Inverted perovskite solar cells
下载PDF
Recent advances of interface engineering in inverted perovskite solar cells
18
作者 Shiqi Yu Zhuang Xiong +6 位作者 Zhenhan Wang Haitao Zhou Fei Ma Zihan Qu Yang Zhao Xinbo Chu Jingbi You 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第10期53-65,共13页
Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unst... Perovskite solar cells(PSCs)have witnessed great achievement in the past decade.Most of previous researches focus on the n-i-p structure of PSCs with ultra-high efficiency.While the n-i-p devices usually used the unstable charge transport layers,such as the hygroscopic doped spiro-OMe TAD,which affect the long-term stability.The inverted device with the p-i-n structure owns better stability when using stable undoped organic molecular or metal oxide materials.There are significant progresses in inverted PSCs,most of them related to charge transport or interface engineering.In this review,we will mainly summarize the inverted PSCs progresses related to the interface engineering.After that,we prospect the future direction on inverted PSCs. 展开更多
关键词 inverted perovskite solar cells charge transport layer interface modification defect passivation
下载PDF
Photoactive area modification in bulk heterojunction organic solar cells using optimization of electrochemically synthesized ZnO nanorods
19
作者 Mehdi Ahmadi Sajjad Rashidi Dafeh 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期422-427,共6页
In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and na... In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6- 6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved. 展开更多
关键词 electrochemical deposition density-controlled ZnO nanorods inverted polymer solar cells active area modification
下载PDF
Improved interfacial property by small molecule ethanediamine for high performance inverted planar perovskite solar cells
20
作者 Guodong Zhang Yunxin Zhang +9 位作者 Siqi Chen Hao Chen Le Liu Wenming Ding Jinhui Wang Anyu Zhang Shuping Pang Xin Guo Lianqing Yu Tonggang Jiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期467-474,共8页
We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte h... We report a simple and effective method to realize desirable interfacial property for inverted planar perovskite solar cells(PSCs)by using small molecule ethanediamine for the construction of a novel polyelectrolyte hole transport material(P3CT-ED HTM).It is found that P3CT-ED can not only improve the hole transport property of P3CT-K but also improve the crystallinity of adjacent perovskite film.In addition,the introduction of ethanediamine into P3CT realigns the conduction and valence bands upwards,passivates surface defects and reduces nonradiative recombination.As a consequence,compared to P3CT-K hole transport layer(HTL)based devices,the average power conversion efficiency(PCE)is boosted from17.2% to 19.6% for the counterparts with P3CT-ED,with simultaneous enhancement in open circuit voltage and fill factor.The resultant device displays a champion PCE of 20.5% with negligible hysteresis. 展开更多
关键词 Improved interfacial property Inverted planar perovskite solar cells Passivated trap states Crystallinity Ethanediamine
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部