Bulk heterojunction solar cells based on poly poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) as liquid crystal semiconductive polymer and C60 as electron acceptor were fabricated and characterized. Thermal treatment ...Bulk heterojunction solar cells based on poly poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) as liquid crystal semiconductive polymer and C60 as electron acceptor were fabricated and characterized. Thermal treatment of the bulk heterojunction films at annealing in the range of glass temperature and liquid crystal transition was performed for tuning optimization with improving the photovoltaic and optical properties. The photovoltaic performance was depended on morphological behavior in active layer at crystal state below glass temperature. The F8T2 thin film worked for electron-donor layer as p-type semiconductor to support charge transfer in active layer. Mechanisms of the photovoltaic properties were discussed on the basis of experimental results.展开更多
This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative.With a doping ratio of 0....This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative.With a doping ratio of 0.3 wt%,the device achieves an ideal improvement on the shunt resistor and the fill factor.Compared with the reference cell,the power conversion efficiency of the doped cell is improved 24%.The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect.展开更多
文摘Bulk heterojunction solar cells based on poly poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) as liquid crystal semiconductive polymer and C60 as electron acceptor were fabricated and characterized. Thermal treatment of the bulk heterojunction films at annealing in the range of glass temperature and liquid crystal transition was performed for tuning optimization with improving the photovoltaic and optical properties. The photovoltaic performance was depended on morphological behavior in active layer at crystal state below glass temperature. The F8T2 thin film worked for electron-donor layer as p-type semiconductor to support charge transfer in active layer. Mechanisms of the photovoltaic properties were discussed on the basis of experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant No.61540016)
文摘This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative.With a doping ratio of 0.3 wt%,the device achieves an ideal improvement on the shunt resistor and the fill factor.Compared with the reference cell,the power conversion efficiency of the doped cell is improved 24%.The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect.