Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,h...Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.展开更多
BACKGROUND: How to induce endogenous neural stem cells (NSCs) to differentiate into needed neural cell types is a hot spot of current researches. OBJECTIVE: To compare differences between fetal bovine serum and Ch...BACKGROUND: How to induce endogenous neural stem cells (NSCs) to differentiate into needed neural cell types is a hot spot of current researches. OBJECTIVE: To compare differences between fetal bovine serum and Chinese herbal formula Naoluoxintong serum supplementation for inducing proliferation and differentiation in rat embryonic NSCs. DESIGN, TIME AND SETTING: An in vitro, serum pharmacology, comparative, observation study was performed from March to September in 2008 at the Laboratory of Neurodegenerative Diseases, College of Life Science in University of Science and Technology of China, the Key Laboratory Breeding Base of Acupuncture Foundation and Technology in Anhui University of Traditional Chinese Medicine, the Anhui Province Key Laboratory of R & D of Chinese Medicine, and at the Level 3 Laboratory of Molecular Biology of the State Administration of Traditional Chinese Medicine. MATERIALS: The Chinese herbal formula Naoluoxintong was produced by Radix Astragali, Radix Notoginseng, Rhizoma Chuanxiong, Scolopendra at Anhui University of Traditional Chinese Medicine. Mouse anti-rat nestin, gliat fibrillary acidic protein, and galactocerebroside monoclonal antibodies, as well as rabbit anti-neuron-specific enolase polyclonal antibody were produced by Chemicon, Billerica, MA, USA. METHODS: Wistar rats aged 3 months were intragastrically infused with Naoluoxintong. Wistar rat embryonic NSCs (passage 8) were induced to proliferate and differentiate using 10% fetal bovine serum, 10% Naoluoxintong serum, and 10% rat serum. MAIN OUTCOME MEASURES: Phenotypic changes in cultured cells were detected using phase contrast microscopy, and cell proliferation and differentiation were observed using immunofluorescence staining. RESULTS: Proliferation and differentiation of embryonic NSCs was induced by three different types of blood serum. Although the differentiation time course with Nao/uoxintongserum was later than with the other two methods, the differentiated cells were morphologically similar to mature neurons to a greater extent. CONCLUSION: Nao/uoxintong serum supplementation induced differentiation of NSCs into neuronal-like cells and stimulated neuronal maturation.展开更多
Objective:To investigate the proliferation-inhibiting and apoptosis-inducing effects of ursolic acid(UA) and oleanolic acid(OA) on multi-drug resistance(MDR) cancer cells in vitro.Methods:UA and OA in differen...Objective:To investigate the proliferation-inhibiting and apoptosis-inducing effects of ursolic acid(UA) and oleanolic acid(OA) on multi-drug resistance(MDR) cancer cells in vitro.Methods:UA and OA in different concentrations(0-100μmol/L) were added separately to cultures of different cancer cell lines, including the human colon cancer cell lines SW480 and SW620,human acute myelocytic leukemia cancer cell lines HL60 and HL60/ADR,human chronic myelogenous leukemia cell lines K562 and K562/ADR,and the human breast cancer cell lines MCF-7 and MCF-7/ADR.Effects of UA and OA on cell proliferation were detected by 3-(4,5-dimethyl-2-thiazole)-2-5-biphenly-tetrazole bromide(MTT) method and effects on cell apoptosis were tested by flow cytometry(FCM) and Western blot at 24,48,and 72 h after treatment.Results:Both UA and OA showed significant inhibition on parent and MDR cell lines in a time- and concentration-dependent manner;the drug-resistant multiple of them on K562 and K562/ADR as well as on HL60 and HL60/ADR was 1;the effects of UA were better than those of OA in inhibiting cell growth of solid colonic cancer and breast cancer.After SW480 cells were treated by UA at the concentrations of 0-40μmol/L for 48 h,FCM showed that annexin V (AV) positive cells and hypodiploid peak ratio increased along with the increase in the drug's concentrations; and Western blot found that expressions of Bcl-2,Bcl-xL and survivin decreased in a concentration-dependent manner.Conclusions:Both UA and OA have antitumor effects on cancer cells with MDR,and the optimal effect is shown by UA on colonic cancer cells.Also,UA shows cell apoptosis-inducing effect on SW480,possibly by way of down-regulating the expressions of apoptosis antagonistic proteins,Bcl-2,Bcl-xL,and survivin.展开更多
The sense of smell is important for human quality of life. This sophisticated sensorial system relies on the detection of odorant molecules that engage receptors expressed in the cilia of dedicated neurons that consti...The sense of smell is important for human quality of life. This sophisticated sensorial system relies on the detection of odorant molecules that engage receptors expressed in the cilia of dedicated neurons that constitute the olfactory epithelium(OE). Importantly, the OE is a highly active site of adult neurogenesis where short-lived neurons are efficiently replenished, even after massive neuronal cell loss. It is suggested that the degree of olfactory function recovery after OE injury may depend on the nature of the lesion(traumatic, chemical, infectious or inflammatory), as well on the velocity of cellular regeneration. Topical steroidal anti-inflammatory drugs, such as glucocorticoids, are routinely prescribed for treating upper airway inflammatory conditions, such as chronic rhinosinusitis. While the therapeutic strategy aims to minimize the inflammatory damage and dysfunction to nasal air conduction, new evidences raise concerns if such drugs may impair neuronal regeneration in the OE. In consequence, new directions are necessary in terms of drug development or prescription, in order to preserve olfactory function through lifelong repeated episodes of chronic inflammation in the upper respiratory tract. Here we discuss mechanisms involved in glucocorticoid deleterious effects to OE regeneration and possible therapeutic alternatives considering relevant side effects.展开更多
文摘Objective Retinoblastoma(RB)is a prevalent type of eye cancer in youngsters.Prospero homeobox 1(Prox1)is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic,hepatocyte,pancreatic,heart,lens,retinal,and cancer cells.The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance,as well as to explore the underlying Notch1 mechanism.Methods Human RB cell lines(SO-RB50 and Y79)and a primary human retinal microvascular endothelial cell line(ACBRI-181)were used in this study.The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction(RT-qPCR)and Western blotting.Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay.Drug-resistant cell lines(SO-RB50/vincristine)were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance.We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1.Finally,a xenograft model was constructed to assess the effect of Prox1 on RB in vivo.Results Prox1 was significantly downregulated in RB cells.Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine.Notch1 was involved in Prox1’s regulatory effects.Notch1 was identified as a target gene of Prox1,which was found to be upregulated in RB cells and repressed by increased Prox1 expression.When pcDNA-Notch1 was transfected,the effect of Prox1 overexpression on RB was removed.Furthermore,by downregulating Notch1,Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo.Conclusion These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1,implying that Prox1 could be a potential therapeutic target for RB.
基金National Natural Science Foundation of China,No.30873293,30672592Natural Science Foundation of Anhui Province,No.070413125,050430904+1 种基金Dr.Yafang Lü Graduate Research Foundation of Beijing University of Chinese Medicine,No.2004Natural Science Research Fund of Education Department of Anhui Province,No.2006KJ382B
文摘BACKGROUND: How to induce endogenous neural stem cells (NSCs) to differentiate into needed neural cell types is a hot spot of current researches. OBJECTIVE: To compare differences between fetal bovine serum and Chinese herbal formula Naoluoxintong serum supplementation for inducing proliferation and differentiation in rat embryonic NSCs. DESIGN, TIME AND SETTING: An in vitro, serum pharmacology, comparative, observation study was performed from March to September in 2008 at the Laboratory of Neurodegenerative Diseases, College of Life Science in University of Science and Technology of China, the Key Laboratory Breeding Base of Acupuncture Foundation and Technology in Anhui University of Traditional Chinese Medicine, the Anhui Province Key Laboratory of R & D of Chinese Medicine, and at the Level 3 Laboratory of Molecular Biology of the State Administration of Traditional Chinese Medicine. MATERIALS: The Chinese herbal formula Naoluoxintong was produced by Radix Astragali, Radix Notoginseng, Rhizoma Chuanxiong, Scolopendra at Anhui University of Traditional Chinese Medicine. Mouse anti-rat nestin, gliat fibrillary acidic protein, and galactocerebroside monoclonal antibodies, as well as rabbit anti-neuron-specific enolase polyclonal antibody were produced by Chemicon, Billerica, MA, USA. METHODS: Wistar rats aged 3 months were intragastrically infused with Naoluoxintong. Wistar rat embryonic NSCs (passage 8) were induced to proliferate and differentiate using 10% fetal bovine serum, 10% Naoluoxintong serum, and 10% rat serum. MAIN OUTCOME MEASURES: Phenotypic changes in cultured cells were detected using phase contrast microscopy, and cell proliferation and differentiation were observed using immunofluorescence staining. RESULTS: Proliferation and differentiation of embryonic NSCs was induced by three different types of blood serum. Although the differentiation time course with Nao/uoxintongserum was later than with the other two methods, the differentiated cells were morphologically similar to mature neurons to a greater extent. CONCLUSION: Nao/uoxintong serum supplementation induced differentiation of NSCs into neuronal-like cells and stimulated neuronal maturation.
基金Supported by the National Plan for Supporting High Technique Research and Development(863 Plan,No.2006AA02Z341)the Supporting Items of Zhejiang Ministry of Sciences and Technology(No.2008C30037)
文摘Objective:To investigate the proliferation-inhibiting and apoptosis-inducing effects of ursolic acid(UA) and oleanolic acid(OA) on multi-drug resistance(MDR) cancer cells in vitro.Methods:UA and OA in different concentrations(0-100μmol/L) were added separately to cultures of different cancer cell lines, including the human colon cancer cell lines SW480 and SW620,human acute myelocytic leukemia cancer cell lines HL60 and HL60/ADR,human chronic myelogenous leukemia cell lines K562 and K562/ADR,and the human breast cancer cell lines MCF-7 and MCF-7/ADR.Effects of UA and OA on cell proliferation were detected by 3-(4,5-dimethyl-2-thiazole)-2-5-biphenly-tetrazole bromide(MTT) method and effects on cell apoptosis were tested by flow cytometry(FCM) and Western blot at 24,48,and 72 h after treatment.Results:Both UA and OA showed significant inhibition on parent and MDR cell lines in a time- and concentration-dependent manner;the drug-resistant multiple of them on K562 and K562/ADR as well as on HL60 and HL60/ADR was 1;the effects of UA were better than those of OA in inhibiting cell growth of solid colonic cancer and breast cancer.After SW480 cells were treated by UA at the concentrations of 0-40μmol/L for 48 h,FCM showed that annexin V (AV) positive cells and hypodiploid peak ratio increased along with the increase in the drug's concentrations; and Western blot found that expressions of Bcl-2,Bcl-xL and survivin decreased in a concentration-dependent manner.Conclusions:Both UA and OA have antitumor effects on cancer cells with MDR,and the optimal effect is shown by UA on colonic cancer cells.Also,UA shows cell apoptosis-inducing effect on SW480,possibly by way of down-regulating the expressions of apoptosis antagonistic proteins,Bcl-2,Bcl-xL,and survivin.
基金supported by research grants to IG from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo(FAPESP 2007/53732-8)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq 484869/2012-4)CEPID Redoxoma(FAPESP 2013/07937-8)
文摘The sense of smell is important for human quality of life. This sophisticated sensorial system relies on the detection of odorant molecules that engage receptors expressed in the cilia of dedicated neurons that constitute the olfactory epithelium(OE). Importantly, the OE is a highly active site of adult neurogenesis where short-lived neurons are efficiently replenished, even after massive neuronal cell loss. It is suggested that the degree of olfactory function recovery after OE injury may depend on the nature of the lesion(traumatic, chemical, infectious or inflammatory), as well on the velocity of cellular regeneration. Topical steroidal anti-inflammatory drugs, such as glucocorticoids, are routinely prescribed for treating upper airway inflammatory conditions, such as chronic rhinosinusitis. While the therapeutic strategy aims to minimize the inflammatory damage and dysfunction to nasal air conduction, new evidences raise concerns if such drugs may impair neuronal regeneration in the OE. In consequence, new directions are necessary in terms of drug development or prescription, in order to preserve olfactory function through lifelong repeated episodes of chronic inflammation in the upper respiratory tract. Here we discuss mechanisms involved in glucocorticoid deleterious effects to OE regeneration and possible therapeutic alternatives considering relevant side effects.