期刊文献+
共找到637,185篇文章
< 1 2 250 >
每页显示 20 50 100
Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans
1
作者 Ana Milena Silva Olaya Fernanda Martins Almeida +1 位作者 Ana Maria Blanco Martinez Suelen Adriani Marques 《Neural Regeneration Research》 SCIE CAS 2025年第2期343-353,共11页
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo... Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans. 展开更多
关键词 BIOENGINEERING BIOmaterialS cell therapy humans non-human primates spinal cord injury stem cell therapy
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
2
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding Micro-nano structure interface control CONDUCTIVITY
下载PDF
High‑Entropy Electrode Materials:Synthesis,Properties and Outlook
3
作者 Dongxiao Li Chang Liu +7 位作者 Shusheng Tao Jieming Cai Biao Zhong Jie Li Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期472-506,共35页
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c... High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials. 展开更多
关键词 High-entropy Energy storage Electrode materials
下载PDF
Recent Advances in Fibrous Materials for Hydroelectricity Generation
4
作者 Can Ge Duo Xu +10 位作者 Xiao Feng Xing Yang Zheheng Song Yuhang Song Jingyu Chen Yingcun Liu Chong Gao Yong Du Zhe Sun Weilin Xu Jian Fang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期109-133,共25页
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gas... Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed. 展开更多
关键词 HYDROELECTRICITY Fibrous material Streaming potential Ion diffusion
下载PDF
Nanograting‑Based Dynamic Structural Colors Using Heterogeneous Materials
5
作者 Jingang Wang Haibo Yu +6 位作者 Jianchen Zheng Yuzhao Zhang Hongji Guo Ye Qiu Xiaoduo Wang Yongliang Yang Lianqing Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期138-151,共14页
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov... Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips. 展开更多
关键词 Dynamic structural colors Four-dimensional printing PH-RESPONSIVE Nanogrid Heterogeneous materials
下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
6
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
Defect Engineering:Can it Mitigate Strong Coulomb Effect of Mg^(2+)in Cathode Materials for Rechargeable Magnesium Batteries?
7
作者 Zhengqing Fan Ruimin Li +3 位作者 Xin Zhang Wanyu Zhao Zhenghui Pan Xiaowei Yang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期135-159,共25页
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th... Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described. 展开更多
关键词 Rechargeable magnesium battery Sluggish diffusion kinetic Defect engineering Cathode materials Ion migration
下载PDF
Two-Dimensional Materials for Highly Efficient and Stable Perovskite Solar Cells
8
作者 Xiangqian Shen Xuesong Lin +5 位作者 Yong Peng Yiqiang Zhang Fei Long Qifeng Han Yanbo Wang Liyuan Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期176-212,共37页
Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders th... Perovskite solar cells(PSCs)offer low costs and high power conversion efficiency.However,the lack of long-term stability,primarily stemming from the interfacial defects and the sus-ceptible metal electrodes,hinders their practical application.In the past few years,two-dimensional(2D)materials(e.g.,graphene and its derivatives,transitional metal dichalcogenides,MXenes,and black phosphorus)have been identified as a promising solution to solving these problems because of their dangling bond-free surfaces,layer-dependent electronic band structures,tunable functional groups,and inherent compactness.Here,recent progress of 2D material toward efficient and stable PSCs is summarized,including its role as both interface materials and electrodes.We discuss their beneficial effects on perovskite growth,energy level alignment,defect passivation,as well as blocking external stimulus.In particular,the unique properties of 2D materials to form van der Waals heterojunction at the bottom interface are emphasized.Finally,perspectives on the further development of PSCs using 2D materials are provided,such as designing high-quality van der Waals heterojunction,enhancing the uniformity and coverage of 2D nanosheets,and developing new 2D materials-based electrodes. 展开更多
关键词 Perovskite solar cells Two-dimensional materials Interface engineering Van der Waals heterojunction Electrodes
下载PDF
Optimization Strategies of Na_(3)V_(2)(PO_(4))_(3) Cathode Materials for Sodium‑Ion Batteries
9
作者 Jiawen Hu Xinwei Li +4 位作者 Qianqian Liang Li Xu Changsheng Ding Yu Liu Yanfeng Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期204-251,共48页
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab... Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs. 展开更多
关键词 Sodium-ion batteries Na_(3)V_(2)(PO_(4))_(3) Cathode materials Electrochemical performance Optimization strategies
下载PDF
Chlorine-Substituent Regulation in Dopant-Free Small-Molecule Hole-Transport Materials Improves the Effi ciency and Stability of Inverted Perovskite Solar Cells
10
作者 Xinyi Liu Xiaoye Zhang +7 位作者 Zhanfeng Li Jinbo Chen Yanting Tian Baoyou Liu Changfeng Si Gang Yue Hua Dong Zhaoxin Wu 《Transactions of Tianjin University》 EI CAS 2024年第4期314-323,共10页
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec... Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs. 展开更多
关键词 Hole-transport materials Inverted perovskite solar cells Chlorinated small molecules Donor–acceptor–donor structure
下载PDF
The application of cellulosic-based materials on interfacial solar steam generation for highly efficient wastewater purification: A review
11
作者 Haroon A.M.Saeed Weilin Xu Hongjun Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期245-282,共38页
The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as m... The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as mitigating the power crisis,minimizing water pollution,and improving the purification and desalination of seawater,rivers/lakes,and wastewater.Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications.This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices,specifically focusing on their applications in water purification and desalination.This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials,such as cellulose nanofibers derived from different sources,carbonized wood materials,and two-dimensional(2D)and 3D cellulosic-based materials from various sources,as well as advanced cellulosic materials,including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes.The focus is on exploring the potential applications of these materials in ISSG devices for water desalination,purification,and treatment.The function,advantages,and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion.In addition,the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination,purification,and treatment were also emphasized. 展开更多
关键词 cellULOSIC materialS PHOTOTHERMAL conversion process SOLAR STEAM GENERATION wastewater purification
下载PDF
Recent Progress in Improving Rate Performance of Cellulose-Derived Carbon Materials for Sodium-Ion Batteries
12
作者 Fujuan Wang Tianyun Zhang +2 位作者 Tian Zhang Tianqi He Fen Ran 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期102-147,共46页
Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge... Cellulose-derived carbon is regarded as one of the most promising candidates for high-performance anode materials in sodium-ion batteries;however,its poor rate performance at higher current density remains a challenge to achieve high power density sodium-ion batteries.The present review comprehensively elucidates the structural characteristics of cellulose-based materials and cellulose-derived carbon materials,explores the limitations in enhancing rate performance arising from ion diffusion and electronic transfer at the level of cellulose-derived carbon materials,and proposes corresponding strategies to improve rate performance targeted at various precursors of cellulose-based materials.This review also presents an update on recent progress in cellulose-based materials and cellulose-derived carbon materials,with particular focuses on their molecular,crystalline,and aggregation structures.Furthermore,the relationship between storage sodium and rate performance the carbon materials is elucidated through theoretical calculations and characterization analyses.Finally,future perspectives regarding challenges and opportunities in the research field of cellulose-derived carbon anodes are briefly highlighted. 展开更多
关键词 cellULOSE Hard carbon Anode materials Rate performance Sodium-ion batteries
下载PDF
Fabrication and Excellent Properties of Polyvinylidene fluoride/Graphene Composite Films as Thermal Interface Materials
13
作者 Yu Zhou Li Zuo +5 位作者 Azizur Rahman Bo Hong Hongwei Chen Linchao Zhang Hongbo Ju Junfeng Yang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第5期671-678,I0101,共9页
The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composi... The growing concern about thermal conductivityand electromagnetic shielding inelectronic equipment has promoted the development of interfacial film materials.In this work,polyvinylidene fluoride(PVDF)/graphene composite films with different graphene contents were fabricated by high-energy ball milling,cold isostatic pressing,scraping and coating,successively.High-energy ball milling is beneficial to the dispersion of graphene powder,while cold isostatic pressing can greatly enhance thermal conductivity and mechanical strength by reducing the voids in the film and increasing the contact area of graphene sheets.The thermal conductivity,tensile strength and electromagnetic shielding properties of the films were carefully investigated and compared.It was demonstrated that the thermal conductivity increased from 0.19 Wm-1.K-1 for pure PVDF to 103.9 W-m-1.K-1 for the composite film with PVDF:graphene=1:3.Meanwhile the electromagnetic shielding efficiency can reach 36.55 dB.The prepared PVDF/graphene composite films exhibit outstanding overall performance and have the potential for practical applications. 展开更多
关键词 Thermal interface material GRAPHENE Polyvinylidene fluoride Thermal con-ductivity Electromagnetic interference shielding
下载PDF
A commentary on the interplay of biomaterials and cell adhesion:new insights in bone tissue regeneration
14
作者 A.NOEL GRAVINA NOELIA D´ELÍA +1 位作者 LUCIANO A.BENEDINI PAULA MESSINA 《BIOCELL》 SCIE 2024年第11期1517-1520,共4页
This article navigates the relationship between biomaterials and osteogenic cell adhesion,highlighting the importance of mimicking the physiological response for bone tissue regeneration.Within this spirit is an initi... This article navigates the relationship between biomaterials and osteogenic cell adhesion,highlighting the importance of mimicking the physiological response for bone tissue regeneration.Within this spirit is an initial description of the interaction between osteoblasts and osteoprogenitor cells with the extracellular matrix,explaining the leading role of integrins and cadherins in cell adhesion,and the intracellular signaling pathways elicited.Additionally,there is a focus on the strategies of advanced biomaterials that foster osteogenesis by replicating the native environment,taking advantage of these known specific signaling pathways.Thefinal remarks lay on the need for careful consideration of in-vitro and in-vivo complexities in biomaterial development. 展开更多
关键词 OSTEOGENESIS CADHERINS INTEGRINS Extracellular cell matrix
下载PDF
Recent progress in Ni-rich layered oxides and related cathode materials for Li-ion cells
15
作者 Boyang Fu Maciej Moździerz +1 位作者 Andrzej Kulka Konrad Świerczek 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2345-2367,共23页
Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the... Undoubtedly,the enormous progress observed in recent years in the Ni-rich layered cathode materials has been crucial in terms of pushing boundaries of the Li-ion battery(LIB)technology.The achieved improvements in the energy density,cyclability,charging speed,reduced costs,as well as safety and stability,already contribute to the wider adoption of LIBs,which extends nowadays beyond mobile electronics,power tools,and electric vehicles,to the new range of applications,including grid storage solutions.With numerous published papers and broad reviews already available on the subject of Ni-rich oxides,this review focuses more on the most recent progress and new ideas presented in the literature references.The covered topics include doping and composition optimization,advanced coating,concentration gradient and single crystal materials,as well as innovations concerning new electrolytes and their modification,with the application of Ni-rich cathodes in solid-state batteries also discussed.Related cathode materials are briefly mentioned,with the high-entropy approach and zero-strain concept presented as well.A critical overview of the still unresolved issues is given,with perspectives on the further directions of studies and the expected gains provided. 展开更多
关键词 lithium-ion batteries cathode materials nickel-rich layered oxides recent progress critical issues improvement strategies
下载PDF
Numerical Study and Optimization of CZTS-Based Thin-Film Solar Cell Structure with Different Novel Buffer-Layer Materials Using SCAPS-1D Software
16
作者 Md. Zamil Sultan Arman Shahriar +4 位作者 Rony Tota Md. Nuralam Howlader Hasibul Haque Rodro Mahfuja Jannat Akhy Md. Abir Al Rashik 《Energy and Power Engineering》 2024年第4期179-195,共17页
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr... This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously. 展开更多
关键词 Thin-Film Solar cell CZTS Buffer-Layer Renewable Energy Green-House Gases Efficiency
下载PDF
Bithiophene-based cost-effective hole transport materials for efficient n-i-p perovskite solar cells
17
作者 Lang Li Lingfang Zheng +6 位作者 Wei Gao Jinyan Zeng Siwei Hao Xinjing Zhao Yangyang Dang Liqiang Xie Zhanhua Wei 《Energy Materials and Devices》 2024年第2期18-28,共11页
Charge transport materials constitute a relatively large portion of the cost in the production of perovskite solar cells(PSCs).Therefore,developing cheap and efficient charge transport materials is of great significan... Charge transport materials constitute a relatively large portion of the cost in the production of perovskite solar cells(PSCs).Therefore,developing cheap and efficient charge transport materials is of great significance for the commercialization of PSCs.In this study,three low-cost hole transport materials(HTMs),specifically 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(N,N-bis(4-methoxyphenyl)aniline)(TP-H),4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-methoxy-N,N-bis(4-methoxy-phenyl)aniline)(TP-OMe),and 4,4'-(3,3'-bis(4-methoxy-2,6-dimethylphenyl)-[2,2'-bithiophene]-5,5'-diyl)bis(3-fluoro-N,N-bis(4-methoxyphenyl)aniline)(TP-F),were designed and synthesized using a bulky group-substi-tuted 2,2'-bithiophene core and methoxy-or F-functionalized triphenylamine derivatives.Compared to the HTMs without F atoms,TP-F using F substitution exhibited enhanced intermolecular packing,a lower highest occupied molecular orbital energy level,and increased hole mobility and conductivity.The PSC incorporating the doped TP-F as the hole transport layer achieved the highest power conversion efficiency(over 24%)among the three devices.The high performance of TP-F can be attributed to the passivation effect of S and F atoms on uncoordinated Pb2+within the perovskite(PVSK)film,which significantly reduces the density of defect states and the incidence of trap-mediated recombination in PSCs.This study demonstrates the effec-tiveness of the 3,3'-bis(4-methoxy-2,6-dimethylphenyl)-2,2'-bithiophene building block for constructing cost-effective HTMs and highlights the impact of F substitution on enhancing the photovoltaic performance of PSCs. 展开更多
关键词 perovskite solar cells hole transport material low cost passivation effect
下载PDF
Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis
18
作者 Xuyao Liu Qi Shi +7 位作者 Peng Qi Ziming Wang Tongyue Zhang Sijia Zhang Jiayan Wu Zhaopei Guo Jie Chen Qiang Zhang 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第3期22-40,共19页
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a top... The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery. 展开更多
关键词 Nucleic acid NANOmaterialS In situ detection Living cell Early cancer diagnosis
下载PDF
Effect of carbon material and surfactant on ink property and resulting surface cracks of fuel-cell microporous layers
19
作者 Zhekun Chen Weitong Pan +2 位作者 Longfei Tang Xueli Chen Fuchen Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期1-12,共12页
Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is t... Ensuring the consistency of electrode structure in proton-exchange-membrane fuel cells is highly desired yet challenging because of wide-existing and unguided cracks in the microporous layer(MPL). The first thing is to evaluate the homogeneity of MPL with cracks quantitatively. This paper proposes the homogeneity index of a full-scale MPL with an area of 50 cm~2, which is yet to be reported in the literature to our knowledge. Besides, the effects of the carbon material and surfactant on the ink and resulting MPL structure have been studied. The ink with a high network development degree produces an MPL with low crack density, but the ink with high PDI produces an MPL with low crack homogeneity. The polarity of the surfactant and the non-polarity of polytetrafluoroethylene(PTFE) are not mutually soluble,resulting in the heterogeneous PTFE distribution. The findings of this study provide guidelines for MPL fabrication. 展开更多
关键词 Proton-exchange-membrane fuel cell Microporous layer Crack density Crack homogeneity Polytetrafluoroethylene distribution SURFACTANT
下载PDF
Inkjet-Printing Controlled Phase Evolution Boosts the Efficiency of Hole Transport Material Free and Carbon-Based CsPbBr_(3) Perovskite Solar Cells Exceeding 9%
20
作者 Lihua Zhang Shi Chen +7 位作者 Jie Zeng Zhengyan Jiang Qian Ai Xianfu Zhang Bihua Hu Xingzhu Wang Shihe Yang Baomin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期209-220,共12页
Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the ... Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films. 展开更多
关键词 all-inorganic perovskite solar cells CsPbBr_(3) inkjet-printing phase evolution
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部