The finite element method (FEM) and the finite volume method (FVM) numerical simulation methods have been widely used in forging industries to improve the quality of products and reduce the costs. Because of very conc...The finite element method (FEM) and the finite volume method (FVM) numerical simulation methods have been widely used in forging industries to improve the quality of products and reduce the costs. Because of very concentrative large deformation during the aluminum extrusion processes, it is very difficult to simulate the whole forming process only by using either FEM or FVM. In order to solve this problem, an FEM and FVM compound simulation method was proposed. The theoretical equations of the compound simulation method were given and the key techniques were studied. Then, the configuration of the compound simulation system was established. The tube extrusion process was simulated successfully so as to prove the validity of this approach for aluminum extrusion processes.展开更多
A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and ther...A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and thermal waste transport equations. Finite volume method (FVM) is used to discretize the shallow water equations, and flux difference splitting (FDS) scheme is applied. The calculated area with the same temperature increment shows the effect of thermal discharge on sea water. A comparison between simulated results and the experimental data shows good agreement. It indicates that this method can give high precision in the heat transfer simulation in coastal areas.展开更多
Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to ...Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to the accuracy and effectiveness of extrusion process analyses. In this paper, the extrusion processes of two complex aluminum profiles are simulated with FEM and FVM respectively. The merit and disadvantage of these two methods are analyzed. The finite element method exhibits higher calculation efficiency in the simulation of a lock catch extrusion process. However, due to frequent rezoning in simulation of complex extrusion process, sharp distortion of finite element mesh can decrease computational accuracy. Therefore the volume loss in FEM simulation is larger than that in FVM simulation by five percent. Based on Euler description, the finite volume method employs structured element mesh covering entire material flowing area, which makes it more robust in the simulation of complicate extrusion process. The deformation configuration with FVM is much smoother than that with FEM in the extrusion simulation of a thin-walled aluminum profile, although FVM requires more computation time.展开更多
作为西南山区最为频发的地质灾害之一,滑坡对山区中大量存在的砖混房屋造成严重影响,尤其农村山区中受灾最为严重,给人民群众生产生活造成巨大安全隐患.研究滑坡引起的上部砖混结构变形特征,对科学指导房屋设计防护及灾后监测点布置具...作为西南山区最为频发的地质灾害之一,滑坡对山区中大量存在的砖混房屋造成严重影响,尤其农村山区中受灾最为严重,给人民群众生产生活造成巨大安全隐患.研究滑坡引起的上部砖混结构变形特征,对科学指导房屋设计防护及灾后监测点布置具有重要现实意义.本文以酉阳高园子滑坡为例,通过现场调查和裂缝参数拟合研究了滑坡区砖混结构变形破坏特征.同时基于PFC3D,构建了有限体积-离散元(Finite Volume Method-Discrete Element Method,FVM-DEM)滑坡-房屋单向耦合模型,模拟并分析了在不同工况下滑坡动态发育过程,进一步揭示了房屋裂缝产生及演化过程.结果表明:相比于普通无柱砖混结构,底框结构抵抗滑坡诱发变形破坏的能力更强,并且处于前后缘段的房屋相对中段房屋更易出现损伤破坏;房屋的长宽比不宜过小,布置房屋长边走向平行斜坡走向有利于减少滑坡对房屋造成的破坏.本文总结了在滑坡作用下,上部砖混结构的变形特征和裂缝开展规律,可为农村山区砖混结构设计和布置提供参考.展开更多
文摘The finite element method (FEM) and the finite volume method (FVM) numerical simulation methods have been widely used in forging industries to improve the quality of products and reduce the costs. Because of very concentrative large deformation during the aluminum extrusion processes, it is very difficult to simulate the whole forming process only by using either FEM or FVM. In order to solve this problem, an FEM and FVM compound simulation method was proposed. The theoretical equations of the compound simulation method were given and the key techniques were studied. Then, the configuration of the compound simulation system was established. The tube extrusion process was simulated successfully so as to prove the validity of this approach for aluminum extrusion processes.
文摘A two-dimensional numerical model is proposed to simulate the thermal discharge from a power plant in Jiangsu Province. The equations in the model consist of two-dimensional non-steady shallow water equations and thermal waste transport equations. Finite volume method (FVM) is used to discretize the shallow water equations, and flux difference splitting (FDS) scheme is applied. The calculated area with the same temperature increment shows the effect of thermal discharge on sea water. A comparison between simulated results and the experimental data shows good agreement. It indicates that this method can give high precision in the heat transfer simulation in coastal areas.
基金Proiects(0452nm034, 0552nm041) supported by the Science and Technology Committee of Shanghai, China
文摘Extrusion is the key technology to manufacture aluminum profiles and involves complicate metal deformation coupled with temperature changes. The choice of numerical technique plays an important role and is related to the accuracy and effectiveness of extrusion process analyses. In this paper, the extrusion processes of two complex aluminum profiles are simulated with FEM and FVM respectively. The merit and disadvantage of these two methods are analyzed. The finite element method exhibits higher calculation efficiency in the simulation of a lock catch extrusion process. However, due to frequent rezoning in simulation of complex extrusion process, sharp distortion of finite element mesh can decrease computational accuracy. Therefore the volume loss in FEM simulation is larger than that in FVM simulation by five percent. Based on Euler description, the finite volume method employs structured element mesh covering entire material flowing area, which makes it more robust in the simulation of complicate extrusion process. The deformation configuration with FVM is much smoother than that with FEM in the extrusion simulation of a thin-walled aluminum profile, although FVM requires more computation time.
文摘作为西南山区最为频发的地质灾害之一,滑坡对山区中大量存在的砖混房屋造成严重影响,尤其农村山区中受灾最为严重,给人民群众生产生活造成巨大安全隐患.研究滑坡引起的上部砖混结构变形特征,对科学指导房屋设计防护及灾后监测点布置具有重要现实意义.本文以酉阳高园子滑坡为例,通过现场调查和裂缝参数拟合研究了滑坡区砖混结构变形破坏特征.同时基于PFC3D,构建了有限体积-离散元(Finite Volume Method-Discrete Element Method,FVM-DEM)滑坡-房屋单向耦合模型,模拟并分析了在不同工况下滑坡动态发育过程,进一步揭示了房屋裂缝产生及演化过程.结果表明:相比于普通无柱砖混结构,底框结构抵抗滑坡诱发变形破坏的能力更强,并且处于前后缘段的房屋相对中段房屋更易出现损伤破坏;房屋的长宽比不宜过小,布置房屋长边走向平行斜坡走向有利于减少滑坡对房屋造成的破坏.本文总结了在滑坡作用下,上部砖混结构的变形特征和裂缝开展规律,可为农村山区砖混结构设计和布置提供参考.