Objectives: Cell polarity and epithelial morphology are peculiar features of cells forming the terminal ductal lobular unit, and they are early lost during neoplastic transformation because of an epithelial-mesenchyma...Objectives: Cell polarity and epithelial morphology are peculiar features of cells forming the terminal ductal lobular unit, and they are early lost during neoplastic transformation because of an epithelial-mesenchymal transition (EMT). To understand these early events we analyzed a set of 125 genes related to cell polarity, EMT and cell-fate decision in 26 breast cancer specimens and corresponding patient-matched normal tissue. Methods: The difference of gene expression was explored by t-paired test. In addition, to evidence latent variables accounting for genes correlations, a Factor Analysis was applied as exploratory technique. Results: Among the 90 differentially expressed genes, those coding for cell polarity complexes, apical-junctional components and luminal cytokeratins were overexpressed in tumor samples (suggesting a terminally differentiated phenotype) whereas those coding for stemness-associated features or related with EMT were expressed in normal tissues but not in tumor samples, suggesting the persistence of stem/progenitor cells. Factor analysis confirmed these findings and indicated that the difference between tumors and normal tissues can be synthesized in three main features representative of specific molecular/morphological alterations. Conclusions: The a priori definition of a selected panel of genes and the application of an exploratory statistical approach, greatly contribute to reduce the intrinsic biological complexity of tumor specimens and to describe the difference between tumor specimens and corresponding histologically normal tissues.展开更多
文摘Objectives: Cell polarity and epithelial morphology are peculiar features of cells forming the terminal ductal lobular unit, and they are early lost during neoplastic transformation because of an epithelial-mesenchymal transition (EMT). To understand these early events we analyzed a set of 125 genes related to cell polarity, EMT and cell-fate decision in 26 breast cancer specimens and corresponding patient-matched normal tissue. Methods: The difference of gene expression was explored by t-paired test. In addition, to evidence latent variables accounting for genes correlations, a Factor Analysis was applied as exploratory technique. Results: Among the 90 differentially expressed genes, those coding for cell polarity complexes, apical-junctional components and luminal cytokeratins were overexpressed in tumor samples (suggesting a terminally differentiated phenotype) whereas those coding for stemness-associated features or related with EMT were expressed in normal tissues but not in tumor samples, suggesting the persistence of stem/progenitor cells. Factor analysis confirmed these findings and indicated that the difference between tumors and normal tissues can be synthesized in three main features representative of specific molecular/morphological alterations. Conclusions: The a priori definition of a selected panel of genes and the application of an exploratory statistical approach, greatly contribute to reduce the intrinsic biological complexity of tumor specimens and to describe the difference between tumor specimens and corresponding histologically normal tissues.