Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essent...Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and...Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each ...The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.展开更多
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul...Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.展开更多
Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve...Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,mainta...BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,maintaining these properties unchanged and are retained at the injury site to participate in the repair process.Route of delivery(RoD)remains one of the critical determinants of safety and efficacy.This study elucidates the safety and effectiveness of different RoDs of MSC treatment in heart failure(HF)based on phase II randomized clinical trials(RCTs).We hypothesize that the RoD modulates the safety and efficacy of MSCbased therapy and determines the outcome of the intervention.AIM To investigate the effect of RoD of MSCs on safety and efficacy in HF patients.METHODS RCTs were retrieved from six databases.Safety endpoints included mortality and serious adverse events(SAEs),while efficacy outcomes encompassed changes in left ventricular ejection fraction(LVEF),6-minute walk distance(6MWD),and pro-B-type natriuretic peptide(pro-BNP).Subgroup analyses on RoD were performed for all study endpoints.RESULTS Twelve RCTs were included.Overall,MSC therapy demonstrated a significant decrease in mortality[relative risk(RR):0.55,95%confidence interval(95%CI):0.33-0.92,P=0.02]compared to control,while SAE outcomes showed no significant difference(RR:0.84,95%CI:0.66-1.05,P=0.11).RoD subgroup analysis revealed a significant difference in SAE among the transendocardial(TESI)injection subgroup(RR=0.71,95%CI:0.54-0.95,P=0.04).The pooled weighted mean difference(WMD)demonstrated an overall significant improvement of LVEF by 2.44%(WMD:2.44%,95%CI:0.80-4.29,P value≤0.001),with only intracoronary(IC)subgroup showing significant improvement(WMD:7.26%,95%CI:5.61-8.92,P≤0.001).Furthermore,the IC delivery route significantly improved 6MWD by 115 m(WMD=114.99 m,95%CI:91.48-138.50),respectively.In biochemical efficacy outcomes,only the IC subgroup showed a significant reduction in pro-BNP by-860.64 pg/mL(WMD:-860.64 pg/Ml,95%CI:-944.02 to-777.26,P=0.001).CONCLUSION Our study concluded that all delivery methods of MSC-based therapy are safe.Despite the overall benefits in efficacy,the TESI and IC routes provided better outcomes than other methods.Larger-scale trials are warranted before implementing MSC-based therapy in routine clinical practice.展开更多
We synthesized B-He/B-GREDVY and immobilized them on avidin-coated surfaces.To examine the immobilization of molecules in the material, the following experiments were performed:fluorescein isothiocyanate(FITC) fluores...We synthesized B-He/B-GREDVY and immobilized them on avidin-coated surfaces.To examine the immobilization of molecules in the material, the following experiments were performed:fluorescein isothiocyanate(FITC) fluorescence staining, water contact angle and atomic force microscopy(AFM) measurements. Besides, the biological evaluation experiments were also performed, such as platelets adhesion and activation, the culturing of smooth muscle cells(SMC) and endothelial cells(EC). These experimental results show that the modified surfaces could prevent the hyperproliferation of SMC, and promote the proliferation and migration of EC and EPC. Furthermore, the adding of VEGF improved the EC adhesion in a dynamic environment. Generally, it is expected that the modified surfaces could be used to accelerate the formation of the newly endothelial layer for the construction of platforms for coronary artery stent therapy.展开更多
Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain met...Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.展开更多
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co...Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische...Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.展开更多
Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial...Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial cell(BMEC)dysfunction via the miR-9/Hes1 axis remain unknown.Therefore,the current study aimed to determine the effects of EXOs on BMEC proliferation,migration,and death via the miR-9/Hes1 axis.Methods:Immunofluorescence,quantitative real-time polymerase chain reaction,cell counting kit-8 assay,wound healing assay,calcein-acetoxymethyl/propidium iodide staining,and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs.Results:EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions.The overexpression of miR-9 promoted BMEC prolifera-tion and migration and reduced cell death under hypoxic conditions.Moreover,miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death.Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death.Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice.Meanwhile,EXO treatment improved cerebrovascular alterations.Conclusion:NSC-derived EXOs can promote BMEC proliferation and migra-tion and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions.Therefore,EXO therapeutic strategies could be considered for hypoxia-induced vascular injury.展开更多
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski...Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.展开更多
AIM:To investigate the effects of Sonic hedgehog(Shh)gene-modified bone marrow mesenchymal stem cells(MSCs)on graft-induced retinal gliosis and retinal ganglion cells(RGCs)survival in diabetic mice.METHODS:Bone marrow...AIM:To investigate the effects of Sonic hedgehog(Shh)gene-modified bone marrow mesenchymal stem cells(MSCs)on graft-induced retinal gliosis and retinal ganglion cells(RGCs)survival in diabetic mice.METHODS:Bone marrow-derived MSCs were genetically modified with the Shh gene to generate a stably transfected cell line of Shh-modified MSCs(MSC-Shh).Intravitreal injections of MSC-Shh and green fluorescent protein-modified MSCs(MSC-Gfp;control)were administered in diabetic mice.After 4wk,the effects of MSC-Shh on retinal gliosis were evaluated using fundus photography,and markers of gliosis were examined by immunofluorescence and Western blotting.The neurotrophic factors expression and RGCs survival in the host retina were evaluated using Western blotting and immunofluorescence.The mechanisms underlying the effects of MSC-Shh was investigated.RESULTS:A significant reduction of proliferative vitreoretinopathy(PVR)was observed after intravitreal injection of MSC-Shh compared to MSC-Gfp.Significant downregulation of glial fibrillary acidic protein(GFAP)was demonstrated in the host retina after MSC-Shh administration compared to MSC-Gfp.The extracellular signal-regulated kinase 1/2(ERK1/2),protein kinase B(AKT)and phosphatidylin-ositol-3-kinase(PI3K)pathways were significantly downregulated after MSC-Shh administration compared to MSC-Gfp.Brain-derived neurotrophic factor(BDNF)and ciliary neurotrophic factor(CNTF)levels were significantly increased in the host retina,and RGCs loss was significantly prevented after MSC-Shh administration.CONCLUSION:MSC-Shh administration reduces graft-induced reactive gliosis following intravitreal injection in diabetic mice.The ERK1/2,AKT and PI3K pathways are involved in this process.MSC-Shh also increases the levels of neurotrophic factors in the host retina and promoted RGCs survival in diabetic mice.展开更多
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve...Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.展开更多
Mesenchymal stem cells(MSCs)are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses.Non-alcoholic fatty liver disease(NAFLD)is characterized by the ...Mesenchymal stem cells(MSCs)are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses.Non-alcoholic fatty liver disease(NAFLD)is characterized by the accumulation of triglycerides in liver cells and involves immune system activation,leading to histological changes,tissue damage,and clinical symptoms.A recent publication by Jiang et al,highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.In this editorial,we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.展开更多
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ...Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.展开更多
文摘Mesenchymalstemcells(MSCs)areidealcandidatesfortreatingmanycardiovasculardiseases.MSCscanmodify the internal cardiac microenvironment to facilitate their immunomodulatory and differentiation abilities,which are essential to restore heart function.MSCs can be easily isolated from different sources,including bone marrow,adipose tissues,umbilical cord,and dental pulp.MSCs from various sources differ in their regenerative and therapeutic abilities for cardiovascular disorders.In this review,we will summarize the therapeutic potential of each MSC source for heart diseases and highlight the possible molecular mechanisms of each source to restore cardiac function.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
文摘Non-alcoholic fatty liver disease(NAFLD)is the most common chronic liver disease,defined by several phases,ranging from benign fat accumulation to non-alcoholic steatohepatitis(NASH),which can lead to liver cancer and cirrhosis.Although NAFLD is a disease of disordered metabolism,it also involves several immune cell-mediated inflammatory processes,either promoting and/or suppressing hepatocyte inflammation through the secretion of pro-inflammatory and/or anti-inflammatory factors to influence the NAFLD process.However,the underlying disease mechanism and the role of immune cells in NAFLD are still under investigation,leaving many open-ended questions.In this review,we presented the recent concepts about the interplay of immune cells in the onset and pathogenesis of NAFLD.We also highlighted the specific non-immune cells exhibiting immunological properties of therapeutic significance in NAFLD.We hope that this review will help guide the development of future NAFLD therapeutics.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
文摘The stem cell pre-treatment approaches at cellular and sub-cellular levels encompass physical manipulation of stem cells to growth factor treatment,genetic manipulation,and chemical and pharmacological treatment,each strategy having advantages and limitations.Most of these pre-treatment protocols are non-combinative.This editorial is a continuum of Li et al’s published article and Wan et al’s editorial focusing on the significance of pre-treatment strategies to enhance their stemness,immunoregulatory,and immunosuppressive properties.They have elaborated on the intricacies of the combinative pre-treatment protocol using pro-inflammatory cytokines and hypoxia.Applying a well-defined multi-pronged combinatorial strategy of mesenchymal stem cells(MSCs),pre-treatment based on the mechanistic understanding is expected to develop“Super MSCs”,which will create a transformative shift in MSC-based therapies in clinical settings,potentially revolutionizing the field.Once optimized,the standardized protocols may be used with slight modifications to pre-treat different stem cells to develop“super stem cells”with augmented stemness,functionality,and reparability for diverse clinical applications with better outcomes.
文摘Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
文摘Wharton’s jelly mesenchymal stem cells(WJ-MSCs)are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries.WJ-MSCs are more naïve and have a better safety profile,making them suitable for both autologous and allogeneic transplantations.This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries.In this review,we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses.Finally,the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
文摘BACKGROUND Mesenchymal stem cells(MSCs)as living biopharmaceuticals with unique properties,i.e.,stemness,viability,phenotypes,paracrine activity,etc.,need to be administered such that they reach the target site,maintaining these properties unchanged and are retained at the injury site to participate in the repair process.Route of delivery(RoD)remains one of the critical determinants of safety and efficacy.This study elucidates the safety and effectiveness of different RoDs of MSC treatment in heart failure(HF)based on phase II randomized clinical trials(RCTs).We hypothesize that the RoD modulates the safety and efficacy of MSCbased therapy and determines the outcome of the intervention.AIM To investigate the effect of RoD of MSCs on safety and efficacy in HF patients.METHODS RCTs were retrieved from six databases.Safety endpoints included mortality and serious adverse events(SAEs),while efficacy outcomes encompassed changes in left ventricular ejection fraction(LVEF),6-minute walk distance(6MWD),and pro-B-type natriuretic peptide(pro-BNP).Subgroup analyses on RoD were performed for all study endpoints.RESULTS Twelve RCTs were included.Overall,MSC therapy demonstrated a significant decrease in mortality[relative risk(RR):0.55,95%confidence interval(95%CI):0.33-0.92,P=0.02]compared to control,while SAE outcomes showed no significant difference(RR:0.84,95%CI:0.66-1.05,P=0.11).RoD subgroup analysis revealed a significant difference in SAE among the transendocardial(TESI)injection subgroup(RR=0.71,95%CI:0.54-0.95,P=0.04).The pooled weighted mean difference(WMD)demonstrated an overall significant improvement of LVEF by 2.44%(WMD:2.44%,95%CI:0.80-4.29,P value≤0.001),with only intracoronary(IC)subgroup showing significant improvement(WMD:7.26%,95%CI:5.61-8.92,P≤0.001).Furthermore,the IC delivery route significantly improved 6MWD by 115 m(WMD=114.99 m,95%CI:91.48-138.50),respectively.In biochemical efficacy outcomes,only the IC subgroup showed a significant reduction in pro-BNP by-860.64 pg/mL(WMD:-860.64 pg/Ml,95%CI:-944.02 to-777.26,P=0.001).CONCLUSION Our study concluded that all delivery methods of MSC-based therapy are safe.Despite the overall benefits in efficacy,the TESI and IC routes provided better outcomes than other methods.Larger-scale trials are warranted before implementing MSC-based therapy in routine clinical practice.
基金Funded by the National Natural Science Foundation of China(Nos.32271377 and 31870955)the National Key Research and Development of China (No.2020YFC1107300-03)。
文摘We synthesized B-He/B-GREDVY and immobilized them on avidin-coated surfaces.To examine the immobilization of molecules in the material, the following experiments were performed:fluorescein isothiocyanate(FITC) fluorescence staining, water contact angle and atomic force microscopy(AFM) measurements. Besides, the biological evaluation experiments were also performed, such as platelets adhesion and activation, the culturing of smooth muscle cells(SMC) and endothelial cells(EC). These experimental results show that the modified surfaces could prevent the hyperproliferation of SMC, and promote the proliferation and migration of EC and EPC. Furthermore, the adding of VEGF improved the EC adhesion in a dynamic environment. Generally, it is expected that the modified surfaces could be used to accelerate the formation of the newly endothelial layer for the construction of platforms for coronary artery stent therapy.
基金supported by the National Natural Science Foundation of China, No.82274616the Key Laboratory Project for General Universities in Guangdong Province, No.2019KSYS005Guangdong Province Science and Technology Plan International Cooperation Project, No.2020A0505100052 (all to QW)。
文摘Meningeal lymphatic vessels form a relationship between the nervous system and periphery, which is relevant in both health and disease. Meningeal lymphatic vessels not only play a key role in the drainage of brain metabolites but also contribute to antigen delivery and immune cell activation. The advent of novel genomic technologies has enabled rapid progress in the characterization of myeloid and lymphoid cells and their interactions with meningeal lymphatic vessels within the central nervous system. In this review, we provide an overview of the multifaceted roles of meningeal lymphatic vessels within the context of the central nervous system immune network, highlighting recent discoveries on the immunological niche provided by meningeal lymphatic vessels. Furthermore, we delve into the mechanisms of crosstalk between meningeal lymphatic vessels and immune cells in the central nervous system under both homeostatic conditions and neurodegenerative diseases, discussing how these interactions shape the pathological outcomes. Regulation of meningeal lymphatic vessel function and structure can influence lymphatic drainage, cerebrospinal fluid-borne immune modulators, and immune cell populations in aging and neurodegenerative disorders, thereby playing a key role in shaping meningeal and brain parenchyma immunity.
基金financially supported by the National Natural Science Foundation of China (22279083,22109166,52202183)Guangdong Basic and Applied Basic Research Foundation (Grant No.2019A1515011136,2022B1515120006,2023B1515120041,2414050001473)+3 种基金Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded SchemeGuangdong Provincial Key Laboratory Program (2021B1212040001)from the Department of Science and Technology of Guangdong ProvinceBeijing Institute of TechnologySongshan Lake Materials Laboratory。
文摘Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.82001604Guizhou Provincial Higher Education Science and Technology Innovation Team,No.[2023]072+1 种基金Guizhou Province Distinguished Young Scientific and Technological Talent Program,No.YQK[2023]040Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2021]-368(all to LXiong),and Zunyi City Innovative Talent Team Training Plan,No.[2022]-2.
文摘Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.
基金Program of Natural Science Foundation of Shanghai,Grant/Award Number:21ZR1453800 and 22ZR1452400Program of National Natural Science Foundation of China,Grant/Award Number:82370057+3 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:22120220562Program of Shanghai Municipal Health Commission,Grant/Award Number:20204Y0384Program of National Key Research and Development Project of China,Grant/Award Number:2023YFC2509500。
文摘Background:Our previous study found that mouse embryonic neural stem cell(NSC)-derived exosomes(EXOs)regulated NSC differentiation via the miR-9/Hes1 axis.However,the effects of EXOs on brain microvascular endothelial cell(BMEC)dysfunction via the miR-9/Hes1 axis remain unknown.Therefore,the current study aimed to determine the effects of EXOs on BMEC proliferation,migration,and death via the miR-9/Hes1 axis.Methods:Immunofluorescence,quantitative real-time polymerase chain reaction,cell counting kit-8 assay,wound healing assay,calcein-acetoxymethyl/propidium iodide staining,and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs.Results:EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions.The overexpression of miR-9 promoted BMEC prolifera-tion and migration and reduced cell death under hypoxic conditions.Moreover,miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death.Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death.Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice.Meanwhile,EXO treatment improved cerebrovascular alterations.Conclusion:NSC-derived EXOs can promote BMEC proliferation and migra-tion and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions.Therefore,EXO therapeutic strategies could be considered for hypoxia-induced vascular injury.
基金supported by the National Research Foundation of Korea (NRF)the Ministry of Science,ICT (2022M3J1A1085285,2019R1A2C1084010,and 2022R1A2C2006532)the Korea Electric Power Corporation (R20XO02-1)。
文摘Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell.
基金Supported by the Natural Science Foundation of Guangdong Province(No.2018A0303130293,No.2023A1515012470).
文摘AIM:To investigate the effects of Sonic hedgehog(Shh)gene-modified bone marrow mesenchymal stem cells(MSCs)on graft-induced retinal gliosis and retinal ganglion cells(RGCs)survival in diabetic mice.METHODS:Bone marrow-derived MSCs were genetically modified with the Shh gene to generate a stably transfected cell line of Shh-modified MSCs(MSC-Shh).Intravitreal injections of MSC-Shh and green fluorescent protein-modified MSCs(MSC-Gfp;control)were administered in diabetic mice.After 4wk,the effects of MSC-Shh on retinal gliosis were evaluated using fundus photography,and markers of gliosis were examined by immunofluorescence and Western blotting.The neurotrophic factors expression and RGCs survival in the host retina were evaluated using Western blotting and immunofluorescence.The mechanisms underlying the effects of MSC-Shh was investigated.RESULTS:A significant reduction of proliferative vitreoretinopathy(PVR)was observed after intravitreal injection of MSC-Shh compared to MSC-Gfp.Significant downregulation of glial fibrillary acidic protein(GFAP)was demonstrated in the host retina after MSC-Shh administration compared to MSC-Gfp.The extracellular signal-regulated kinase 1/2(ERK1/2),protein kinase B(AKT)and phosphatidylin-ositol-3-kinase(PI3K)pathways were significantly downregulated after MSC-Shh administration compared to MSC-Gfp.Brain-derived neurotrophic factor(BDNF)and ciliary neurotrophic factor(CNTF)levels were significantly increased in the host retina,and RGCs loss was significantly prevented after MSC-Shh administration.CONCLUSION:MSC-Shh administration reduces graft-induced reactive gliosis following intravitreal injection in diabetic mice.The ERK1/2,AKT and PI3K pathways are involved in this process.MSC-Shh also increases the levels of neurotrophic factors in the host retina and promoted RGCs survival in diabetic mice.
文摘Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed.
基金Supported by Special Fund of the Beijing Clinical Key Specialty Construction Program,No.BJZKBC0011Clinical Key Project of Peking University Third Hospital,No.BYSYZD2023049.
文摘Mesenchymal stem cells(MSCs)are a prevalent source for stem cell therapy and play a crucial role in modulating both innate and adaptive immune responses.Non-alcoholic fatty liver disease(NAFLD)is characterized by the accumulation of triglycerides in liver cells and involves immune system activation,leading to histological changes,tissue damage,and clinical symptoms.A recent publication by Jiang et al,highlighted the potential of MSCs to mitigate in NAFLD progression by targeting various molecular pathways,including glycolipid metabolism,inflammation,oxidative stress,endoplasmic reticulum stress,and fibrosis.In this editorial,we comment on their research and discuss the efficacy of MSC therapy in treating NAFLD.
基金CAMS Innovation Fund for Medical Sciences,No.2022-I2M-C&T-B-034.
文摘Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.