期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nano-micrometer surface roughness gradients reveal topographical influences on differentiating responses of vascular cells on biodegradable magnesium 被引量:3
1
作者 Ke Zhou Yutong Li +5 位作者 Lei Zhang Liang Jin Feng Yuan Jinyun Tan Guangyin Yuan Jia Pei 《Bioactive Materials》 SCIE 2021年第1期262-272,共11页
Distinctively directing endothelial cells(ECs)and smooth muscle cells(SMCs),potentially by surface topography cue,is of central importance for enhancing bioefficacy of vascular implants.For the first time,surface grad... Distinctively directing endothelial cells(ECs)and smooth muscle cells(SMCs),potentially by surface topography cue,is of central importance for enhancing bioefficacy of vascular implants.For the first time,surface gradients with a broad range of nano-micrometer roughness are developed on Mg,a promising next-generation biodegradable metal,to carry out a systematic study on the response of ECs and SMCs.Cell adhesion,spreading,and proliferation are quantified along gradients by high-throughput imaging,illustrating drastic divergence between ECs and SMCs,especially in highly rough regions.The profound role of surface topography overcoming the biochemical cue of released Mg2+is unraveled at different roughness ranges for ECs and SMCs.Further insights into the underlying regulatory mechanism are gained at subcellular and gene levels.Our work enables highefficient exploration of optimized surface morphology for modulating favored cell selectivity of promoting ECs and suppressing SMCs,providing a potential strategy to achieve rapid endothelialization for Mg. 展开更多
关键词 Surface roughness gradients Topography cue Vascular cells Cell adhesion and proliferation Cell selectivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部