Aim Oxyresveratrol (trans-2,3 ' ,4,5 ' -tetrahydroxystilbene, OXY) , a natural polyphenolic phyto- chemical presents in mulberry (Morus alba L. ) , has been reported to have various bioactivities. Though OXY has...Aim Oxyresveratrol (trans-2,3 ' ,4,5 ' -tetrahydroxystilbene, OXY) , a natural polyphenolic phyto- chemical presents in mulberry (Morus alba L. ) , has been reported to have various bioactivities. Though OXY has high structural similarity with resveratrol, which has been identified as a chemopreventive agent, little is known a- bout OXY's effect on cancer. The main objective of our study was to investigate the effect of OXY on metastasis in vivo. To establish an experimental metastasis model, male Kunming mice were challenged with H22 cells by tail vein injection, and were given different doses of OXY (20, 40,80 mg · kg^-1 body weight per day) for 14 days in- traperitoneally. Administration of OXY showed a clear anti-metastatic effect. Compared to control group (u - 10) , the numbers of pulmonary nodules and lung weight were significantly decreased in mice of 40 mg · kg^- 1 group ( n = 10, P 〈 0.05) , which results in 54.5% reduction in the number of metastases. Similar inhibitory effects were ob- served both at 20 and 80 mg · kg^-1 groups(n= 10, 34.2% and 35.7% , respectively). OXY at the doses used caused an increase in spleen index (P 〈 0.05) but not thymus index. Further we observed animal body weights loss and food intake decrease (P 〈 0.05) , suggesting the toxicity of high dose used. Therefore, we suggest that oxyresveratrol may benefit human as a new preventive agent for cancer metastasis.展开更多
Background:During Enterovirus type 71(EV71)infection,the structural viral protein 1(VP1)activates endoplasmic reticulum(ER)stress associated with peripheral myelin protein 22(PMP22)accumulation and induces autophagy.H...Background:During Enterovirus type 71(EV71)infection,the structural viral protein 1(VP1)activates endoplasmic reticulum(ER)stress associated with peripheral myelin protein 22(PMP22)accumulation and induces autophagy.However,the specific mechanism behind this process remains elusive.Methods:In this research,we used the VP1-overexpressing mouse Schwann cells(SCs)models co-transfected with a PMP22 silencing or Autocrine motility factor receptor(AMFR/gp78)overexpressing vector to explore the regulation of gp78 on PMP22 and its relationship with autophagy and apoptosis.Results:The activity of gp78 could be influenced by EV71-VP1,leading to a decrease in the ubiquitination and degradation of PMP22,resulting in PMP22 accumulation in ER.In VP1-overexpressing mouse SCs,all three ER stress sensors,including pancreatic endoplasmic reticulum kinase(PERK),activating transcription factor 6(ATF6)and inositol-requiring enzyme 1(IRE1)and the related downstream signals(C/EBP-homologous protein(CHOP)and Caspase 12)were activated,as well as the ER-resident chaperone Glucose-regulated protein 78(GRP78).In addition,VP1 upregulated the autophagy marker Microtubule-associated protein 1 light chain 3 beta(LC3B),while PMP22 silencing or gp78 overexpression reversed the phenomenon.Meanwhile,PMP22 silencing or gp78 overexpression increased proliferation of EV71-VP1-transfected mouse SCs.Conclusion:Gp78 could regulate PMP22 accumulation through ubiquitination degradation and cause ER stress and autophagy in EV71-VP1-overexpressing mouse SCs.Therefore,the gp78/PMP22/ER stress axis might emerge as a promising therapeutic target for myelin and neuronal damage induced by EV71 infection.展开更多
The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are...The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.展开更多
Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regen...Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury.展开更多
Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods...Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods:The study focused on meiotic nuclear divisions 1(MND1),integrating data from the Gene Expression Profiling Interactive Analysis(GEPIA)database with prognostic survival analysis.Simultaneously,experiments at cellular level were employed to demonstrate the effect of MND1 on the proliferation and migration of PC.The small-molecule inhibitor of MND1 was used to suppress the migration of PC cells by knocking down MND1 using small interfering RNA(siRNA)in Patu-8988 and Panc1 cell lines.Results:The results of Cell Counting Kit-8 indicated that the suppression of MND1 resulted in a decrease in cell proliferation.Wound healing and Transwell assays revealed that MND1 knockdown reduced cell migration and invasion.Flow cytometry revealed that inhibiting MND1 hindered the cell cycle.Furthermore,MND1 could stimulate the proliferation,migration,and invasion of Patu-8988 and Panc1 cells by increasing the expression of MND1.Notably,MND1 had a positive effect on H2AFX expression in PC cells.Elevated MND1 expression suggests the low overall survival rate of individuals diagnosed with PC.Conclusion:These findings suggest that MND1 has the potential to be a gene with the ability to accurately diagnose and treat PC.展开更多
BACKGROUND Jianpi-Huatan-Huoxue-Anshen formula[Tzu-Chi cancer-antagonizing&lifeprotecting II decoction(TCCL)]is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects ...BACKGROUND Jianpi-Huatan-Huoxue-Anshen formula[Tzu-Chi cancer-antagonizing&lifeprotecting II decoction(TCCL)]is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects of chemotherapy in cancer patients and improve their quality of life.However,its effect and mechanism on the intestinal microecology after chemotherapy are not yet clear.AIM To discover the potential mechanisms of TCCL on gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with hepatocellular carcinoma(HCC).METHODS Ninety-six mice were inoculated subcutaneously with HCC cells.One week later,the mice received a large dose of 5-fluorouracil by intraperitoneal injection to establish a HCC chemotherapy model.Thirty-six mice were randomly selected before administration,and feces,ileal tissue,and ileal contents were collected from each mouse.The remaining mice were randomized into normal saline,continuous chemotherapy,Yangzheng Xiaoji capsulestreated,and three TCCL-treated groups.After treatment,feces,tumors,liver,spleen,thymus,stomach,jejunum,ileum,and colon tissues,and ileal contents were collected.Morphological changes,serum levels of IL-1β,IL-6,IL-8,IL-10,IL-22,TNF-α,and TGF-β,intestinal SIgA,and protein and mRNA expression of ZO-1,NF-κB,Occludin,MUC-2,Claudin-1,and IκB-αin colon tissues were documented.The effect of TCCL on the abundance and diversity of intestinal flora was analyzed using 16S rDNA sequencing.RESULTS TCCL treatment improved thymus and spleen weight,thymus and spleen indexes,and body weight,decreased tumor volumes and tumor tissue cell density,and alleviated injury to gastric,ileal,and colonic mucosal tissues.Among proteins and genes associated with inflammation,IL-10,TGF-β,SIgA,ZO-1,MUC-2,and Occludin were upregulated,whereas NF-κB,IL-1β,IL-6,TNF-α,IL-22,IL-8,and IκB-αwere downregulated.Additionally,TCCL increased the proportions of fecal Actinobacteria,AF12,Adlercreutzia,Clostridium,Coriobacteriaceae,and Paraprevotella in the intermediate stage of treatment,decreased the proportions of Mucipirillum,Odoribacter,RF32,YS2,and Rikenellaceae but increased the proportions of p_Deferribacteres and Lactobacillus at the end of treatment.Studies on ileal mucosal microbiota showed similar findings.Moreover,TCCL improved community richness,evenness,and the diversity of fecal and ileal mucosal flora.CONCLUSION TCCL relieves pathological changes in tumor tissue and chemotherapy-induced gastrointestinal injury,potentially by reducing the release of pro-inflammatory factors to repair the gastrointestinal mucosa,enhancing intestinal barrier function,and maintaining gastrointestinal microecological balance.Hence,TCCL is a very effective adjuvant to chemotherapy.展开更多
Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino...Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine.HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system.Meanwhile,to confirm the metabolic mechanism of aconitine toxicity on HT22 cells,the levels of lactate dehydrogenase,intracellular Ca^(2+),reactive oxygen species,glutathione and superoxide dismutase,and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology.Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid,which was followed by the accumulation of lactic acid and reduction of glucose.The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca^(2+)overload and oxidative stress,and eventually result in cell apoptosis.In general,we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis.展开更多
Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on ...Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on biochemical and biological properties of Ara h 3,a major peanut allergen.Allergenicity of roasted peanut emulsion to mice,differences in uptakes between Ara h 3 purified from raw peanuts(named as Ara h 3-Raw)and that purified from roasted peanuts(named as Ara h 3-Roasted)by bone marrow-derived dendritic cells(BMDCs)and the implication of cell surface receptors involving in uptake,and changes in glycosylation and structure of Ara h 3 after roasting were analyzed in this study.This study suggested that roasting increased allergenicity of peanut to BALB/c mice.Maillard reaction and structural changes of Ara h 3 induced by roasting significantly altered the uptake of Ara h 3-Roasted by BMDCs,and modified Ara h 3 fate in processes involved in immunogenicity and hyper allergenicity,indicating that food processing pattern can change food allergenicity.展开更多
·Stem cells are undifferentiated cells showcasing a remarkable capacity of self-replenishing and differentiating into mature cells.Their ability to proliferate connotes that a designated stem cell source is capab...·Stem cells are undifferentiated cells showcasing a remarkable capacity of self-replenishing and differentiating into mature cells.Their ability to proliferate connotes that a designated stem cell source is capable of generating an unrestricted number of mature cells.The ever-increasing comprehension of position,activity,and function of ocular stem cells has led to rapid progress and incessant improvement of possible procedures and therapies.A narrative review was conducted to summarize the current evidence on clinical trials and respective literature,regarding current evolution in the field of ocular regenerative medicine.We tried to ascertain the safety of experimental and clinical procedures,their effectiveness,and the ethical repercussion of their use.展开更多
In the present study,we introduced the H2O2-sensitive thiazolidinone moiety at the 4th amino group of gemcitabine(GEM)to synthesize a new target compound named GEM-ZZQ,and then we confirmed its chemical structure by n...In the present study,we introduced the H2O2-sensitive thiazolidinone moiety at the 4th amino group of gemcitabine(GEM)to synthesize a new target compound named GEM-ZZQ,and then we confirmed its chemical structure by nuclear magnetic resonance spectroscopy.We further confirmed that GEM-ZZQ had a good chemical stability in different pH solutions in vitro and that it could be activated by H2O2 to release GEM.Pharmacodynamic studies revealed that the growth inhibition of human normal epithelial cells was weaker by GEM-ZZQ than by GEM treatment and that the inhibition of various lung cancer cell lines by GEM-ZZQ was similar to that of GEM.For the lung cancer cell lines that are resistant to the epidermal growth factor receptor(EGFR)-targeting inhibitor osimertinib,GEM-ZZQ showed less growth inhibition than GEM;however,GEM-ZZQ in combination with cisplatin showed better synergistic effects than GEM in the low-dose groups.In summary,we provided a new anti-cancer compound GEM-ZZQ for treating lung cancer by modifying the GEM structure.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)is a common clinical condition with a poor prognosis and few effective treatment options.Potent anticancer agents for treating HCC must be identified.Epigenetics plays an essent...BACKGROUND Hepatocellular carcinoma(HCC)is a common clinical condition with a poor prognosis and few effective treatment options.Potent anticancer agents for treating HCC must be identified.Epigenetics plays an essential role in HCC tumorigenesis.Suberoylanilide hydroxamic acid(SAHA),the most common histone deacetylase inhibitor agent,triggers many forms of cell death in HCC.However,the underlying mechanism of action remains unclear.Family with sequence similarity 134 member B(FAM134B)-induced reticulophagy,a selective autophagic pathway,participates in the decision of cell fate and exhibits anticancer activity.This study focused on the relationship between FAM134B-induced reticulophagy and SAHA-mediated cell death.AIM To elucidate potential roles and underlying molecular mechanisms of reticulophagy in SAHA-induced HCC cell death.METHODS The viability,apoptosis,cell cycle,migration,and invasion of SAHA-treated Huh7 and MHCC97L cells were measured.Proteins related to the reticulophagy pathway,mitochondria-endoplasmic reticulum(ER)contact sites,intrinsic mitochondrial apoptosis,and histone acetylation were quantified using western blotting.ER and lysosome colocalization,and mitochondrial Ca^(2+)levels were characterized via confocal microscopy.The level of cell death was evaluated through Hoechst 33342 staining and propidium iodide colocalization.Chromatin immunoprecipitation was used to verify histone H4 lysine-16 acetylation in the FAM134B promoter region.RESULTS After SAHA treatment,the proliferation of Huh7 and MHCC97L cells was significantly inhibited,and the migration and invasion abilities were greatly blocked in vitro.This promoted apoptosis and caused G1 phase cells to increase in a concentration-dependent manner.Following treatment with SAHA,ER-phagy was activated,thereby triggering autophagy-mediated cell death of HCC cells in vitro.Western blotting and chromatin immunoprecipitation assays confirmed that SAHA regulated FAM134B expression by enhancing the histone H4 lysine-16 acetylation in the FAM134B promoter region.Further,SAHA disturbed the Ca^(2+)homeostasis and upregulated the level of autocrine motility factor receptor and proteins related to mitochondria-endoplasmic reticulum contact sites in HCC cells.Additionally,SAHA decreased the mitochondrial membrane potential levels,thereby accelerating the activation of the reticulophagy-mediated mitochondrial apoptosis pathway and promoting HCC cell death in vitro.CONCLUSION SAHA stimulates FAM134B-mediated ER-phagy to synergistically enhance the mitochondrial apoptotic pathway,thereby enhancing HCC cell death.展开更多
Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocreba...Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocrebanine on microtubule network homeostasis at both molecular and cellular levels.Methods:the EBI site competition method and molecular docking method were used to determine the occupation of the microtubule site of oxocrebanine.Western Blot was used to detect the effect of oxocrebanine on microtubule-associated proteins including STAT3,PAK1,CAMK4,and PKA.Results:The results of EBI site competition assay showed that the binding of EBI toβ-Tubulin covalent fusions produced adducts that appeared in regions of lower molecular weight thanβ-tubulin(ctrl 2).Molecular docking results showed that oxocrebanine could occupy the colchicine site of microtubule proteins.As revealed by Western Blot,the expression of STAT3 protein was decreased after MCF-7 cells have been treated with low,medium,and high concentration of oxocrebanine or the positive drug taxol for 48 h(P<0.01).The expression levels of PAK1 and Camk4 proteins aslo showed significant reductions(P<0.05,or P<0.01).Oxocrebanine also decreased the PKA protein in MCF-7 cells compared to the control group(P<0.01).Conclusions:Oxocrebanine,a ligand that binds at the colchicine site of tubulin,perturbs tubulin polymerization and causes mitosis in MCF-7 cells,thus leading to MCF-7 cell death.Oxocrebanine may promote microtubule dynamics through stathmin by inhibiting the expression levels of STAT3,PAK1,Camk4,and PKA proteins in MCF-7 cells.Oxocrebanine interfers with spindle formation,and ultimately causes mitotic catastrophe in MCF-7 cells.展开更多
Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations ...Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations andepigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells(CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A(ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2 AX to levels representative of growth arrest in normal cells.展开更多
BACKGROUND It is challenging to distinguish intestinal tuberculosis from Crohn’s disease due to dynamic changes in epidemiology and similar clinical characteristics. Recent studies have shown that polymorphisms in ge...BACKGROUND It is challenging to distinguish intestinal tuberculosis from Crohn’s disease due to dynamic changes in epidemiology and similar clinical characteristics. Recent studies have shown that polymorphisms in genes involved in the interleukin (IL)- 23/IL-17 axis may affect intestinal mucosal immunity by affecting the differentiation of Th17 cells. AIM To investigate the specific single-nucleotide polymorphisms (SNPs) in genes involved in the IL-23/IL-17 axis and possible pathways that affect susceptibility to intestinal tuberculosis and Crohn's disease. METHODS We analysed 133 patients with intestinal tuberculosis, 128 with Crohn’s disease, and 500 normal controls. DNA was extracted from paraffin-embedded specimens or whole blood. Four SNPs in the IL23/Th17 axis (IL22 rs2227473, IL1β rs1143627, TGFβ rs4803455, and IL17 rs8193036) were genotyped with TaqMan assays. The transcriptional activity levels of different genotypes of rs2227473 were detected by dual luciferase reporter gene assay. The expression of IL-22R1 in different intestinal diseases was detected by immunohistochemistry. RESULTS The A allele frequency of rs2227473 (P = 0.030, odds ratio = 0.60, 95% confidence interval: 0.37-0.95) showed an abnormal distribution between intestinal tuberculosis and healthy controls. The presence of the A allele was associated with a higher IL-22 transcriptional activity (P < 0.05). In addition, IL-22R1 was expressed in intestinal lymphoid tissues, especially under conditions of intestinal tuberculosis, and highly expressed in macrophage-derived Langhans giant cells. The results of immunohistochemistry showed that the expression of IL-22R1 in patients with Crohn's disease and intestinal tuberculosis was significantly higher than that in patients with intestinal polyps and colon cancer (P < 0.01). CONCLUSION High IL-22 expression seems to be a protective factor for intestinal tuberculosis. IL-22R1 is expressed in Langhans giant cells, suggesting that the IL-22/IL-22R1 system links adaptive and innate immunity.展开更多
Pig is an important economic animal in China. Improving meat quality and meat productivity is a long time issue in animal genetic breeding. Micro RNAs(mi RNAs) are short non-coding RNAs that participate in various bio...Pig is an important economic animal in China. Improving meat quality and meat productivity is a long time issue in animal genetic breeding. Micro RNAs(mi RNAs) are short non-coding RNAs that participate in various biological processes, such as muscle development and embryogenesis. mi R-22 differentially expresses in embryonic and adult skeletal muscle. However, the underlying mechanism is unclear. In this study, we investigated mi R-22 function in proliferation and differentiation of porcine satellite cells(PSCs) in skeletal muscle. Our data show that mi R-22 expressed in both proliferation and differentiated PSCs and is significantly upregulated(P<0.05) during differentiation. After treated with the mi R-22 inhibitor, PSCs proliferation was significantly increased(P<0.05), as indicated by the up-regulation(P<0.01) of cyclin D1(CCND1), cyclin B1(CCNB1) and down-regulation(P<0.05) of P21. Conversely, over-expression of mi R-22 resulted in opposite results. Differentiation of PSCs was significantly suppressed(P<0.05), evidenced by two major myogenic markers: myogenin(Myo G) and myosin heavy chain(My HC), after transfecting the PSCs with mi R-22 inhibitor. Opposite results were demonstrated in the other way around by transfection with mi R-22 mimics. In conclusion, the data from this study indicated that mi R-22 inhibited the PSCs proliferation but promoted their differentiation.展开更多
Objective:To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline(TG)for reducing the H_2O_2induced toxicity in H9c2 cells.Methods:Cyto...Objective:To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline(TG)for reducing the H_2O_2induced toxicity in H9c2 cells.Methods:Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit.RNA extraction and cDNA synthesized according to the kit manufacture protocol.Apoptosis was measured by the Flowcytometry,general PCR and qPCR.Results:It was found that the TG significantly rescued the morphology of the H9c2 cells.Treatment of cells with TG attenuated H_2O_2 induced cell deaths and improved the antioxidant activity.In addition,TG regulated the apoptotic gene caspase-3,caspase-9 and anti-apoptotic gene Bcl-2.Bcl-XL during H_2O_2 induced oxidative stress in H9c2 cells.These results were comparable with quercetin treatment.For evident,flow cytometer results also confirmed the TG significantly reduced the H_2O_2 induced necrosis and apoptosis in H9c2 cells.However,further increment of TG concentration against H_2O_2 could induce the necrosis and apoptosis along with H_2O_2.Conclusions:It is suggested that less than 125μM of TG could protect the cells from H_2O_2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression.Therefore,we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.展开更多
AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epit...AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins. RESULTS: Incubation with H pylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after in- cubation with H pylori extract and appeared to be a sus- tained event. MAPK/ERK kinase (MEK) inhibitor PD98059 abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pylori extract increased c-Fos expression and SRE-dependent gene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract. CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal trans- duction cascade.展开更多
Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the ...Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.展开更多
文摘Aim Oxyresveratrol (trans-2,3 ' ,4,5 ' -tetrahydroxystilbene, OXY) , a natural polyphenolic phyto- chemical presents in mulberry (Morus alba L. ) , has been reported to have various bioactivities. Though OXY has high structural similarity with resveratrol, which has been identified as a chemopreventive agent, little is known a- bout OXY's effect on cancer. The main objective of our study was to investigate the effect of OXY on metastasis in vivo. To establish an experimental metastasis model, male Kunming mice were challenged with H22 cells by tail vein injection, and were given different doses of OXY (20, 40,80 mg · kg^-1 body weight per day) for 14 days in- traperitoneally. Administration of OXY showed a clear anti-metastatic effect. Compared to control group (u - 10) , the numbers of pulmonary nodules and lung weight were significantly decreased in mice of 40 mg · kg^- 1 group ( n = 10, P 〈 0.05) , which results in 54.5% reduction in the number of metastases. Similar inhibitory effects were ob- served both at 20 and 80 mg · kg^-1 groups(n= 10, 34.2% and 35.7% , respectively). OXY at the doses used caused an increase in spleen index (P 〈 0.05) but not thymus index. Further we observed animal body weights loss and food intake decrease (P 〈 0.05) , suggesting the toxicity of high dose used. Therefore, we suggest that oxyresveratrol may benefit human as a new preventive agent for cancer metastasis.
基金The study was supported by Guangdong Natural Science Foundation(Grant Numbers 2020A1515010014,2022A1515012411)Science and Technology Key Project for People’s Livelihood of Guangzhou,China(Grant Number 202206010060)+1 种基金Guangzhou Science and Technology Bureau Basic Research Project(SL2024A03J01288)Innovative Project of Children’s Research Institute,Guangzhou Women and Children’s Medical Center,China(Grant Numbers Pre-NSFC-2019-002,NKE PRE-2019-015).
文摘Background:During Enterovirus type 71(EV71)infection,the structural viral protein 1(VP1)activates endoplasmic reticulum(ER)stress associated with peripheral myelin protein 22(PMP22)accumulation and induces autophagy.However,the specific mechanism behind this process remains elusive.Methods:In this research,we used the VP1-overexpressing mouse Schwann cells(SCs)models co-transfected with a PMP22 silencing or Autocrine motility factor receptor(AMFR/gp78)overexpressing vector to explore the regulation of gp78 on PMP22 and its relationship with autophagy and apoptosis.Results:The activity of gp78 could be influenced by EV71-VP1,leading to a decrease in the ubiquitination and degradation of PMP22,resulting in PMP22 accumulation in ER.In VP1-overexpressing mouse SCs,all three ER stress sensors,including pancreatic endoplasmic reticulum kinase(PERK),activating transcription factor 6(ATF6)and inositol-requiring enzyme 1(IRE1)and the related downstream signals(C/EBP-homologous protein(CHOP)and Caspase 12)were activated,as well as the ER-resident chaperone Glucose-regulated protein 78(GRP78).In addition,VP1 upregulated the autophagy marker Microtubule-associated protein 1 light chain 3 beta(LC3B),while PMP22 silencing or gp78 overexpression reversed the phenomenon.Meanwhile,PMP22 silencing or gp78 overexpression increased proliferation of EV71-VP1-transfected mouse SCs.Conclusion:Gp78 could regulate PMP22 accumulation through ubiquitination degradation and cause ER stress and autophagy in EV71-VP1-overexpressing mouse SCs.Therefore,the gp78/PMP22/ER stress axis might emerge as a promising therapeutic target for myelin and neuronal damage induced by EV71 infection.
基金supported by NIH grants AG079264(to PHR)and AG071560(to APR)。
文摘The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration.Axons and dendrites,sometimes referred to as neurites,are extensions of a neuron's cellular body that are used to start networks.Here we explored the effects of diethyl(3,4-dihydroxyphenethylamino)(quinolin-4-yl)methylphosphonate(DDQ)on neurite developmental features in HT22 neuronal cells.In this work,we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22cells expressing mutant Tau(mTau)cDNA.To investigate DDQ chara cteristics,cell viability,biochemical,molecular,western blotting,and immunocytochemistry were used.Neurite outgrowth is evaluated through the segmentation and measurement of neural processes.These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth.These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22.DDQ-treated mTau-HT22 cells(HT22 cells transfected with cDNA mutant Tau)were seen to display increased levels of synaptophysin,MAP-2,andβ-tubulin.Additionally,we confirmed and noted reduced levels of both total and p-Tau,as well as elevated levels of microtubule-associated protein 2,β-tubulin,synaptophysin,vesicular acetylcholine transporter,and the mitochondrial biogenesis protein-pe roxisome prolife rator-activated receptor-gamma coactivator-1α.In mTa u-expressed HT22 neurons,we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth.Our findings conclude that mTa u-HT22(Alzheimer's disease)cells treated with DDQ have functional neurite developmental chara cteristics.The key finding is that,in mTa u-HT22 cells,DDQ preserves neuronal structure and may even enhance nerve development function with mTa u inhibition.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX)and 81671189(to RX)。
文摘Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury.We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement.However,the neural regeneration efficiency of induced neural stem cells remains limited.In this study,we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells.We found that H19 was the most downregulated neurogenesis-associated lnc RNA in induced neural stem cells compared with induced pluripotent stem cells.Additionally,we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons.We predicted the target genes of H19 and discovered that H19 directly interacts with mi R-325-3p,which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells.Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation,and mi R-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition.Furthermore,H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells.Notably,silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice.Our results reveal that H19 regulates the neurogenesis of induced neural stem cells.H19 inhibition may promote the neural differentiation of induced neural stem cells,which is closely associated with neurological recovery following closed head injury.
基金supported by grants from National Innovation Program for College Students(202210367076)Graduate Student Research Innovation Program of Bengbu Medical College(Byycxz22016)the National Natural Science Foundation of China(82072585),and the Key Research Project of Bengbu Medical College(No.2020byzd029).
文摘Introduction:Among all malignant tumors of the digestive system,pancreatic carcinoma exhibits the highest mortality rate.Currently,prevention and effective treatment are urgent issues that need to be addressed.Methods:The study focused on meiotic nuclear divisions 1(MND1),integrating data from the Gene Expression Profiling Interactive Analysis(GEPIA)database with prognostic survival analysis.Simultaneously,experiments at cellular level were employed to demonstrate the effect of MND1 on the proliferation and migration of PC.The small-molecule inhibitor of MND1 was used to suppress the migration of PC cells by knocking down MND1 using small interfering RNA(siRNA)in Patu-8988 and Panc1 cell lines.Results:The results of Cell Counting Kit-8 indicated that the suppression of MND1 resulted in a decrease in cell proliferation.Wound healing and Transwell assays revealed that MND1 knockdown reduced cell migration and invasion.Flow cytometry revealed that inhibiting MND1 hindered the cell cycle.Furthermore,MND1 could stimulate the proliferation,migration,and invasion of Patu-8988 and Panc1 cells by increasing the expression of MND1.Notably,MND1 had a positive effect on H2AFX expression in PC cells.Elevated MND1 expression suggests the low overall survival rate of individuals diagnosed with PC.Conclusion:These findings suggest that MND1 has the potential to be a gene with the ability to accurately diagnose and treat PC.
基金Supported by Natural Science Foundation of Xiamen,China,No.3502Z20227171the Young Investigator Research Program of Xiang’an Hospital of Xiamen University,No.XAH23005+2 种基金the Traditional Chinese Medicine Foundation of Xiamen,No.XWZY-2023-0103Natural Science Foundation of Fujian,China,No.2018J01136National Natural Science Foundation of China,No.81202659.
文摘BACKGROUND Jianpi-Huatan-Huoxue-Anshen formula[Tzu-Chi cancer-antagonizing&lifeprotecting II decoction(TCCL)]is a Chinese medical formula that has been clinically shown to reduce the gastrointestinal side effects of chemotherapy in cancer patients and improve their quality of life.However,its effect and mechanism on the intestinal microecology after chemotherapy are not yet clear.AIM To discover the potential mechanisms of TCCL on gastrointestinal inflammation and microecological imbalance in chemotherapy-treated mice transplanted with hepatocellular carcinoma(HCC).METHODS Ninety-six mice were inoculated subcutaneously with HCC cells.One week later,the mice received a large dose of 5-fluorouracil by intraperitoneal injection to establish a HCC chemotherapy model.Thirty-six mice were randomly selected before administration,and feces,ileal tissue,and ileal contents were collected from each mouse.The remaining mice were randomized into normal saline,continuous chemotherapy,Yangzheng Xiaoji capsulestreated,and three TCCL-treated groups.After treatment,feces,tumors,liver,spleen,thymus,stomach,jejunum,ileum,and colon tissues,and ileal contents were collected.Morphological changes,serum levels of IL-1β,IL-6,IL-8,IL-10,IL-22,TNF-α,and TGF-β,intestinal SIgA,and protein and mRNA expression of ZO-1,NF-κB,Occludin,MUC-2,Claudin-1,and IκB-αin colon tissues were documented.The effect of TCCL on the abundance and diversity of intestinal flora was analyzed using 16S rDNA sequencing.RESULTS TCCL treatment improved thymus and spleen weight,thymus and spleen indexes,and body weight,decreased tumor volumes and tumor tissue cell density,and alleviated injury to gastric,ileal,and colonic mucosal tissues.Among proteins and genes associated with inflammation,IL-10,TGF-β,SIgA,ZO-1,MUC-2,and Occludin were upregulated,whereas NF-κB,IL-1β,IL-6,TNF-α,IL-22,IL-8,and IκB-αwere downregulated.Additionally,TCCL increased the proportions of fecal Actinobacteria,AF12,Adlercreutzia,Clostridium,Coriobacteriaceae,and Paraprevotella in the intermediate stage of treatment,decreased the proportions of Mucipirillum,Odoribacter,RF32,YS2,and Rikenellaceae but increased the proportions of p_Deferribacteres and Lactobacillus at the end of treatment.Studies on ileal mucosal microbiota showed similar findings.Moreover,TCCL improved community richness,evenness,and the diversity of fecal and ileal mucosal flora.CONCLUSION TCCL relieves pathological changes in tumor tissue and chemotherapy-induced gastrointestinal injury,potentially by reducing the release of pro-inflammatory factors to repair the gastrointestinal mucosa,enhancing intestinal barrier function,and maintaining gastrointestinal microecological balance.Hence,TCCL is a very effective adjuvant to chemotherapy.
基金supported the National Natural Science Foundation of China(Grant Nos.:81973569,82130113,and 22034005)the National Key R&D Program of China(Grant No.:2021YFF0600700)the“Xinglin Scholars”Research Promotion Program of Chengdu University of Traditional Chinese Medicine(Grant No.:BSH2021009).
文摘Aconitine,a common and main toxic component of Aconitum,is toxic to the central nervous system.However,the mechanism of aconitine neurotoxicity is not yet clear.In this work,we had the hypothesis that excitatory amino acids can trigger excitotoxicity as a pointcut to explore the mechanism of neurotoxicity induced by aconitine.HT22 cells were simulated by aconitine and the changes of target cell metabolites were real-time online investigated based on a microfluidic chip-mass spectrometry system.Meanwhile,to confirm the metabolic mechanism of aconitine toxicity on HT22 cells,the levels of lactate dehydrogenase,intracellular Ca^(2+),reactive oxygen species,glutathione and superoxide dismutase,and ratio of Bax/Bcl-2 protein were detected by molecular biotechnology.Integration of the detected results revealed that neurotoxicity induced by aconitine was associated with the process of excitotoxicity caused by glutamic acid and aspartic acid,which was followed by the accumulation of lactic acid and reduction of glucose.The surge of extracellular glutamic acid could further lead to a series of cascade reactions including intracellular Ca^(2+)overload and oxidative stress,and eventually result in cell apoptosis.In general,we illustrated a new mechanism of aconitine neurotoxicity and presented a novel analysis strategy that real-time online monitoring of cell metabolites can provide a new approach to mechanism analysis.
基金funded by the National Key Research and Development Program of China(2016YFD0501101)the project of Food Science Discipline Construction of Shanghai University and the National Natural Science Foundation of China(31201306)。
文摘Little information was so far available about allergenic mechanism of the roasted peanut allergens during initial stages of allergy.The purpose of this study was to determine the influence of roasting(150℃,20 min)on biochemical and biological properties of Ara h 3,a major peanut allergen.Allergenicity of roasted peanut emulsion to mice,differences in uptakes between Ara h 3 purified from raw peanuts(named as Ara h 3-Raw)and that purified from roasted peanuts(named as Ara h 3-Roasted)by bone marrow-derived dendritic cells(BMDCs)and the implication of cell surface receptors involving in uptake,and changes in glycosylation and structure of Ara h 3 after roasting were analyzed in this study.This study suggested that roasting increased allergenicity of peanut to BALB/c mice.Maillard reaction and structural changes of Ara h 3 induced by roasting significantly altered the uptake of Ara h 3-Roasted by BMDCs,and modified Ara h 3 fate in processes involved in immunogenicity and hyper allergenicity,indicating that food processing pattern can change food allergenicity.
文摘·Stem cells are undifferentiated cells showcasing a remarkable capacity of self-replenishing and differentiating into mature cells.Their ability to proliferate connotes that a designated stem cell source is capable of generating an unrestricted number of mature cells.The ever-increasing comprehension of position,activity,and function of ocular stem cells has led to rapid progress and incessant improvement of possible procedures and therapies.A narrative review was conducted to summarize the current evidence on clinical trials and respective literature,regarding current evolution in the field of ocular regenerative medicine.We tried to ascertain the safety of experimental and clinical procedures,their effectiveness,and the ethical repercussion of their use.
基金supported by the National Natural Science Foundation of China(Grant Nos.81972763 and 81473241).
文摘In the present study,we introduced the H2O2-sensitive thiazolidinone moiety at the 4th amino group of gemcitabine(GEM)to synthesize a new target compound named GEM-ZZQ,and then we confirmed its chemical structure by nuclear magnetic resonance spectroscopy.We further confirmed that GEM-ZZQ had a good chemical stability in different pH solutions in vitro and that it could be activated by H2O2 to release GEM.Pharmacodynamic studies revealed that the growth inhibition of human normal epithelial cells was weaker by GEM-ZZQ than by GEM treatment and that the inhibition of various lung cancer cell lines by GEM-ZZQ was similar to that of GEM.For the lung cancer cell lines that are resistant to the epidermal growth factor receptor(EGFR)-targeting inhibitor osimertinib,GEM-ZZQ showed less growth inhibition than GEM;however,GEM-ZZQ in combination with cisplatin showed better synergistic effects than GEM in the low-dose groups.In summary,we provided a new anti-cancer compound GEM-ZZQ for treating lung cancer by modifying the GEM structure.
基金the National Natural Science Foundation of China,No.82260127Guizhou Provincial Science and Technology Projects,No.Qiankehe Jichu-ZK[2021]365 and Qiankehe Jichu-ZK[2021]364+2 种基金National Natural Science Foundation Cultivation Project of Guizhou Medical University,No.20NSP016Guizhou Provincial Natural Science Foundation,No.[2021]4029 and[2022]4017Science and Technology Foundation of Guizhou Provincial Health Commission,No.gzwjkj2019-1-102.
文摘BACKGROUND Hepatocellular carcinoma(HCC)is a common clinical condition with a poor prognosis and few effective treatment options.Potent anticancer agents for treating HCC must be identified.Epigenetics plays an essential role in HCC tumorigenesis.Suberoylanilide hydroxamic acid(SAHA),the most common histone deacetylase inhibitor agent,triggers many forms of cell death in HCC.However,the underlying mechanism of action remains unclear.Family with sequence similarity 134 member B(FAM134B)-induced reticulophagy,a selective autophagic pathway,participates in the decision of cell fate and exhibits anticancer activity.This study focused on the relationship between FAM134B-induced reticulophagy and SAHA-mediated cell death.AIM To elucidate potential roles and underlying molecular mechanisms of reticulophagy in SAHA-induced HCC cell death.METHODS The viability,apoptosis,cell cycle,migration,and invasion of SAHA-treated Huh7 and MHCC97L cells were measured.Proteins related to the reticulophagy pathway,mitochondria-endoplasmic reticulum(ER)contact sites,intrinsic mitochondrial apoptosis,and histone acetylation were quantified using western blotting.ER and lysosome colocalization,and mitochondrial Ca^(2+)levels were characterized via confocal microscopy.The level of cell death was evaluated through Hoechst 33342 staining and propidium iodide colocalization.Chromatin immunoprecipitation was used to verify histone H4 lysine-16 acetylation in the FAM134B promoter region.RESULTS After SAHA treatment,the proliferation of Huh7 and MHCC97L cells was significantly inhibited,and the migration and invasion abilities were greatly blocked in vitro.This promoted apoptosis and caused G1 phase cells to increase in a concentration-dependent manner.Following treatment with SAHA,ER-phagy was activated,thereby triggering autophagy-mediated cell death of HCC cells in vitro.Western blotting and chromatin immunoprecipitation assays confirmed that SAHA regulated FAM134B expression by enhancing the histone H4 lysine-16 acetylation in the FAM134B promoter region.Further,SAHA disturbed the Ca^(2+)homeostasis and upregulated the level of autocrine motility factor receptor and proteins related to mitochondria-endoplasmic reticulum contact sites in HCC cells.Additionally,SAHA decreased the mitochondrial membrane potential levels,thereby accelerating the activation of the reticulophagy-mediated mitochondrial apoptosis pathway and promoting HCC cell death in vitro.CONCLUSION SAHA stimulates FAM134B-mediated ER-phagy to synergistically enhance the mitochondrial apoptotic pathway,thereby enhancing HCC cell death.
基金Natural Science Foundation of Hainan Province(No.820RC776)。
文摘Objective:To determine the destructive ability of oxocrebanine,an anti-breast cancer active compound obtained from Stephania hainanensis H.S.Lo et Y.Tsoong,on microtubule network,and investigate the effect of oxocrebanine on microtubule network homeostasis at both molecular and cellular levels.Methods:the EBI site competition method and molecular docking method were used to determine the occupation of the microtubule site of oxocrebanine.Western Blot was used to detect the effect of oxocrebanine on microtubule-associated proteins including STAT3,PAK1,CAMK4,and PKA.Results:The results of EBI site competition assay showed that the binding of EBI toβ-Tubulin covalent fusions produced adducts that appeared in regions of lower molecular weight thanβ-tubulin(ctrl 2).Molecular docking results showed that oxocrebanine could occupy the colchicine site of microtubule proteins.As revealed by Western Blot,the expression of STAT3 protein was decreased after MCF-7 cells have been treated with low,medium,and high concentration of oxocrebanine or the positive drug taxol for 48 h(P<0.01).The expression levels of PAK1 and Camk4 proteins aslo showed significant reductions(P<0.05,or P<0.01).Oxocrebanine also decreased the PKA protein in MCF-7 cells compared to the control group(P<0.01).Conclusions:Oxocrebanine,a ligand that binds at the colchicine site of tubulin,perturbs tubulin polymerization and causes mitosis in MCF-7 cells,thus leading to MCF-7 cell death.Oxocrebanine may promote microtubule dynamics through stathmin by inhibiting the expression levels of STAT3,PAK1,Camk4,and PKA proteins in MCF-7 cells.Oxocrebanine interfers with spindle formation,and ultimately causes mitotic catastrophe in MCF-7 cells.
基金Supported by Funding from the National Cancer Center Research and Development Fund Grant,No.23-C-10Grants-in-Aid for Scientific Research MEXT KAKENHI,No.20770136Grants-in-Aid for JSPS Fellows
文摘Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations andepigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells(CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A(ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2 AX to levels representative of growth arrest in normal cells.
基金Supported by Key R&D Plan of Science and Technology Department of Jiangxi Province,No.20171BBG70087
文摘BACKGROUND It is challenging to distinguish intestinal tuberculosis from Crohn’s disease due to dynamic changes in epidemiology and similar clinical characteristics. Recent studies have shown that polymorphisms in genes involved in the interleukin (IL)- 23/IL-17 axis may affect intestinal mucosal immunity by affecting the differentiation of Th17 cells. AIM To investigate the specific single-nucleotide polymorphisms (SNPs) in genes involved in the IL-23/IL-17 axis and possible pathways that affect susceptibility to intestinal tuberculosis and Crohn's disease. METHODS We analysed 133 patients with intestinal tuberculosis, 128 with Crohn’s disease, and 500 normal controls. DNA was extracted from paraffin-embedded specimens or whole blood. Four SNPs in the IL23/Th17 axis (IL22 rs2227473, IL1β rs1143627, TGFβ rs4803455, and IL17 rs8193036) were genotyped with TaqMan assays. The transcriptional activity levels of different genotypes of rs2227473 were detected by dual luciferase reporter gene assay. The expression of IL-22R1 in different intestinal diseases was detected by immunohistochemistry. RESULTS The A allele frequency of rs2227473 (P = 0.030, odds ratio = 0.60, 95% confidence interval: 0.37-0.95) showed an abnormal distribution between intestinal tuberculosis and healthy controls. The presence of the A allele was associated with a higher IL-22 transcriptional activity (P < 0.05). In addition, IL-22R1 was expressed in intestinal lymphoid tissues, especially under conditions of intestinal tuberculosis, and highly expressed in macrophage-derived Langhans giant cells. The results of immunohistochemistry showed that the expression of IL-22R1 in patients with Crohn's disease and intestinal tuberculosis was significantly higher than that in patients with intestinal polyps and colon cancer (P < 0.01). CONCLUSION High IL-22 expression seems to be a protective factor for intestinal tuberculosis. IL-22R1 is expressed in Langhans giant cells, suggesting that the IL-22/IL-22R1 system links adaptive and innate immunity.
基金supported by the Key Foundation for Basic and Application Research in Higher Education of guangdong, China (2017KZDXM009)the China Postdoctoral Science Foundation (2018M640789)the Provincial Agricultural Science Innovation and Promotion Project, China. (2018LM2150)
文摘Pig is an important economic animal in China. Improving meat quality and meat productivity is a long time issue in animal genetic breeding. Micro RNAs(mi RNAs) are short non-coding RNAs that participate in various biological processes, such as muscle development and embryogenesis. mi R-22 differentially expresses in embryonic and adult skeletal muscle. However, the underlying mechanism is unclear. In this study, we investigated mi R-22 function in proliferation and differentiation of porcine satellite cells(PSCs) in skeletal muscle. Our data show that mi R-22 expressed in both proliferation and differentiated PSCs and is significantly upregulated(P<0.05) during differentiation. After treated with the mi R-22 inhibitor, PSCs proliferation was significantly increased(P<0.05), as indicated by the up-regulation(P<0.01) of cyclin D1(CCND1), cyclin B1(CCNB1) and down-regulation(P<0.05) of P21. Conversely, over-expression of mi R-22 resulted in opposite results. Differentiation of PSCs was significantly suppressed(P<0.05), evidenced by two major myogenic markers: myogenin(Myo G) and myosin heavy chain(My HC), after transfecting the PSCs with mi R-22 inhibitor. Opposite results were demonstrated in the other way around by transfection with mi R-22 mimics. In conclusion, the data from this study indicated that mi R-22 inhibited the PSCs proliferation but promoted their differentiation.
文摘Objective:To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline(TG)for reducing the H_2O_2induced toxicity in H9c2 cells.Methods:Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit.RNA extraction and cDNA synthesized according to the kit manufacture protocol.Apoptosis was measured by the Flowcytometry,general PCR and qPCR.Results:It was found that the TG significantly rescued the morphology of the H9c2 cells.Treatment of cells with TG attenuated H_2O_2 induced cell deaths and improved the antioxidant activity.In addition,TG regulated the apoptotic gene caspase-3,caspase-9 and anti-apoptotic gene Bcl-2.Bcl-XL during H_2O_2 induced oxidative stress in H9c2 cells.These results were comparable with quercetin treatment.For evident,flow cytometer results also confirmed the TG significantly reduced the H_2O_2 induced necrosis and apoptosis in H9c2 cells.However,further increment of TG concentration against H_2O_2 could induce the necrosis and apoptosis along with H_2O_2.Conclusions:It is suggested that less than 125μM of TG could protect the cells from H_2O_2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression.Therefore,we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.
基金Supported by the National Natural Science Foundation of China, No. 30340036 and No. 30470891 Grant from Jiangsu University and Zhenjiang Key Institute of Clinical Laboratory Medicine (SH2006066)
文摘AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells. METHODS: A VacA (+) and CagA (+) standard H pylori line NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins. RESULTS: Incubation with H pylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after in- cubation with H pylori extract and appeared to be a sus- tained event. MAPK/ERK kinase (MEK) inhibitor PD98059 abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pylori extract increased c-Fos expression and SRE-dependent gene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract. CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal trans- duction cascade.
基金the National Basic Research Program of China (No 2005CB522404 and 2006CB910506)the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in Universities (No IRT0519)the National Natural Science Founda-tion of China (No 30771232 and 30671184)
文摘Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency.