The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. A computer program was development in order to implement the model. An irregular grid of cells ...The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. A computer program was development in order to implement the model. An irregular grid of cells was used. A susceptible-infected-recovered (SIR) scheme was represented. Stochasticity was generated by Monte Carlo method. Dynamics of model was explored by numerical simulations. Model achieves to represent the typical SIR prevalence curve. Performed simulations also show how infection, mobility and distribution of infected individuals may influence the dynamics of propagation. This simple theoretical model might be a basis for developing more realistic designs.展开更多
Due to the high charge transfer efficiency compared to that of non-porous materials,porous electrodes with larger surface area and thinner solid pore walls have been widely applied in the lithium-ion battery field.Sin...Due to the high charge transfer efficiency compared to that of non-porous materials,porous electrodes with larger surface area and thinner solid pore walls have been widely applied in the lithium-ion battery field.Since the capacity and charge-discharge efficiency of batteries are closely related to the microstructure of porous materials,a conceptually simple and computationally efficient cellular automata(CA)framework is proposed to reconstruct the porous electrode structure and simulate the reactiondiffusion process under the irregular solid-liquid boundary in this work.This framework is consisted of an electrode generating model and a reaction-diffusion model.Electrode structures with specific geometric properties,i.e.,porosity,surface area,size distribution,and eccentricity distribution can be constructed by the electrode generating model.The reaction-diffusion model is exemplified by solving the Fick's diffusion problem and simulating the cyclic voltammetry(CV)process.The discharging process in the lithium-ion battery are simulated through combining the above two CA models,and the simulation results are consistent with the well-known pseudo-two-dimensional(P2D)model.In addition,a set of electrodes with different microstructures are constructed and their reaction efficiencies are evaluated.The results indicate that there is an optimum combination of porosity and particle size for discharge efficiency.This framework is a promising one for studying the effect of electrode microstructure on battery performance due to its fully synchronous computation way,easy handled boundary conditions,and free of convergence concerns.展开更多
In this paper we present a model with spatial heterogeneity based on cellular automata (CA). In the model we consider the relevant heterogeneity of host (susceptible) mixing and the natural birth rate. We divide t...In this paper we present a model with spatial heterogeneity based on cellular automata (CA). In the model we consider the relevant heterogeneity of host (susceptible) mixing and the natural birth rate. We divide the susceptible population into three groups according to the immunity of each individual based on the classical susceptible-infectedremoved (SIR) epidemic models, and consider the spread of an infectious disease transmitted by direct contact among humans and vectors that have not an incubation period to become infectious. We test the local stability and instability of the disease-free equilibrium by the spectrum radii of Jacobian. The simulation shows that the structure of the nearest neighbour size of the cell (or the degree of the scale-free networks) plays a very important role in the spread properties of infectious disease. The positive equilibrium of the infections versus the neighbour size follows the third power law if an endemic equilibrium point exists. Finally, we analyse the feature of the infection waves for the homogeneity and heterogeneous cases respectively.展开更多
Three different degrees of heterogeneous fault models are simulated by using 2-D random dynamic cellular automata models for analyzing macroscopic behaviors of seismic activity evolution influenced by heterogeneity of...Three different degrees of heterogeneous fault models are simulated by using 2-D random dynamic cellular automata models for analyzing macroscopic behaviors of seismic activity evolution influenced by heterogeneity of fault structures. The results show that the heterogeneities of fault structures can influence evolution properties of the foreshock activity and rupture process, such as the mediate heterogeneous and less heterogeneous structures, which show relatively higher ASR rates and more significant seismic gaps before main shocks. Besides, stress drop distribution ranges of the foreshock events when approaching a main shock show more homogenous (narrower) than that of the foreshock events far from a main shock. So the heterogeneity of fault structures plays an important role in strong earthquake preparation processes.展开更多
The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the e...The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the exit area when people gather on one side of the exit. In this study, an extended cellular automata model with modified floor field is proposed to solve this problem. Additionally, a congestion judgment mechanism is integrated in our model, whereby people can synthetically judge the degree of congestion and distance in front of them to determine whether they need to change another exit to evacuate or not. We contrasted the simulation results of the conventional floor field model, the extended model proposed in this paper, and Pathfinder software in a same scenario. It is demonstrated that this extended model can ameliorate the problem of insufficient utilization of the exit area and the trajectory of pedestrian movement and the crowd shape of pedestrians in front of exit in this new model are more realistic than those of the other two models. The findings have implications for modeling pedestrian evacuation.展开更多
Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop...Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.展开更多
In this article, we have proposed an epidemic model based on the probability cellular automata theory. The essential mathematical features are analysed with the help of stability theory. We have given an alternative m...In this article, we have proposed an epidemic model based on the probability cellular automata theory. The essential mathematical features are analysed with the help of stability theory. We have given an alternative modelling approach for the spatiotemporal system which is more realistic from the practical point of view. A discrete and spatiotemporal approach is shown by using cellular automata theory. It is interesting to note that both the size of the endemic equilibrium and the density of the individuals increase with the increase of the neighbourhood size and infection rate, but the infections decrease with the increase of the recovery rate. The stability of the system around the positive interior equilibrium has been shown by using a suitable Lyapunov function. Finally, experimental data simulation for SARS disease in China in 2003 and a brief discussion are given.展开更多
In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals....In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on giobal traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions.展开更多
For the three-dimensional (3-D) numerical study of photoresist etching processes, the 2-D dynamic cellular automata (CA) model has been successfully extended to a 3-D dynamic CA model. Only the boundary cells will be ...For the three-dimensional (3-D) numerical study of photoresist etching processes, the 2-D dynamic cellular automata (CA) model has been successfully extended to a 3-D dynamic CA model. Only the boundary cells will be processed in the 3-D dy-namic CA model and the structure of “if-else” description in the simulation pro-gram is avoided to speed up the simulation. The 3-D dynamic CA model has found to be stable, fast and accurate for the numerical study of photoresist etching processes. The exposure simulation, post-exposure bake (PEB) simulation and etching simulation are integrated together to further investigate the performances of the CA model. Simulation results have been compared with the available ex-perimental results and the simulations show good agreement with the available experiments.展开更多
Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fa...Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS.展开更多
文摘The aim of this study was to develop and explore a stochastic lattice gas cellular automata (LGCA) model for epidemics. A computer program was development in order to implement the model. An irregular grid of cells was used. A susceptible-infected-recovered (SIR) scheme was represented. Stochasticity was generated by Monte Carlo method. Dynamics of model was explored by numerical simulations. Model achieves to represent the typical SIR prevalence curve. Performed simulations also show how infection, mobility and distribution of infected individuals may influence the dynamics of propagation. This simple theoretical model might be a basis for developing more realistic designs.
基金the National Natural Science Foundation of China(21878012)。
文摘Due to the high charge transfer efficiency compared to that of non-porous materials,porous electrodes with larger surface area and thinner solid pore walls have been widely applied in the lithium-ion battery field.Since the capacity and charge-discharge efficiency of batteries are closely related to the microstructure of porous materials,a conceptually simple and computationally efficient cellular automata(CA)framework is proposed to reconstruct the porous electrode structure and simulate the reactiondiffusion process under the irregular solid-liquid boundary in this work.This framework is consisted of an electrode generating model and a reaction-diffusion model.Electrode structures with specific geometric properties,i.e.,porosity,surface area,size distribution,and eccentricity distribution can be constructed by the electrode generating model.The reaction-diffusion model is exemplified by solving the Fick's diffusion problem and simulating the cyclic voltammetry(CV)process.The discharging process in the lithium-ion battery are simulated through combining the above two CA models,and the simulation results are consistent with the well-known pseudo-two-dimensional(P2D)model.In addition,a set of electrodes with different microstructures are constructed and their reaction efficiencies are evaluated.The results indicate that there is an optimum combination of porosity and particle size for discharge efficiency.This framework is a promising one for studying the effect of electrode microstructure on battery performance due to its fully synchronous computation way,easy handled boundary conditions,and free of convergence concerns.
基金Project supported by the National Natural Science Foundation of China (Grant No 10471040).
文摘In this paper we present a model with spatial heterogeneity based on cellular automata (CA). In the model we consider the relevant heterogeneity of host (susceptible) mixing and the natural birth rate. We divide the susceptible population into three groups according to the immunity of each individual based on the classical susceptible-infectedremoved (SIR) epidemic models, and consider the spread of an infectious disease transmitted by direct contact among humans and vectors that have not an incubation period to become infectious. We test the local stability and instability of the disease-free equilibrium by the spectrum radii of Jacobian. The simulation shows that the structure of the nearest neighbour size of the cell (or the degree of the scale-free networks) plays a very important role in the spread properties of infectious disease. The positive equilibrium of the infections versus the neighbour size follows the third power law if an endemic equilibrium point exists. Finally, we analyse the feature of the infection waves for the homogeneity and heterogeneous cases respectively.
文摘Three different degrees of heterogeneous fault models are simulated by using 2-D random dynamic cellular automata models for analyzing macroscopic behaviors of seismic activity evolution influenced by heterogeneity of fault structures. The results show that the heterogeneities of fault structures can influence evolution properties of the foreshock activity and rupture process, such as the mediate heterogeneous and less heterogeneous structures, which show relatively higher ASR rates and more significant seismic gaps before main shocks. Besides, stress drop distribution ranges of the foreshock events when approaching a main shock show more homogenous (narrower) than that of the foreshock events far from a main shock. So the heterogeneity of fault structures plays an important role in strong earthquake preparation processes.
基金Project supported by the Sichuan Youth Science and Technology Innovation Research Team Project,China(Grant No.2019JDTD0017)the National Natural Science Foundation of China(Grant No.41702340)the National Science and Technology Major Project of China(Grant No.2017ZX05013001-002).
文摘The floor field model has been widely used in evacuation simulation research based on cellular automata model. However, conventional methods of setting floor field will lead to highly insufficient utilization of the exit area when people gather on one side of the exit. In this study, an extended cellular automata model with modified floor field is proposed to solve this problem. Additionally, a congestion judgment mechanism is integrated in our model, whereby people can synthetically judge the degree of congestion and distance in front of them to determine whether they need to change another exit to evacuate or not. We contrasted the simulation results of the conventional floor field model, the extended model proposed in this paper, and Pathfinder software in a same scenario. It is demonstrated that this extended model can ameliorate the problem of insufficient utilization of the exit area and the trajectory of pedestrian movement and the crowd shape of pedestrians in front of exit in this new model are more realistic than those of the other two models. The findings have implications for modeling pedestrian evacuation.
文摘Cellular automata modeling techniques and the characteristics of mixed traffic flow were used to derive the 2-dimensional model presented here for simulation of pedestrian’s crossing dynamics. A conception of “stop point” is introduced to deal with traffic obstacles and resolve conflicts among pedestrians or between pedestrians and the other vehicles on the crosswalk. The model can be easily extended, is very efficient for simulation of pedestrian’s crossing dy- namics, can be integrated into traffic simulation software, and has been proved feasible by simulation experiments.
基金Project supported by the National Natural Science Foundation of China (Grant No 10471040), the Natural Science Foundation of Shan'xi Province, China (Grant No 2006011009), and part of this work have been done at the time when M. Haque was visiting North University of China.
文摘In this article, we have proposed an epidemic model based on the probability cellular automata theory. The essential mathematical features are analysed with the help of stability theory. We have given an alternative modelling approach for the spatiotemporal system which is more realistic from the practical point of view. A discrete and spatiotemporal approach is shown by using cellular automata theory. It is interesting to note that both the size of the endemic equilibrium and the density of the individuals increase with the increase of the neighbourhood size and infection rate, but the infections decrease with the increase of the recovery rate. The stability of the system around the positive interior equilibrium has been shown by using a suitable Lyapunov function. Finally, experimental data simulation for SARS disease in China in 2003 and a brief discussion are given.
文摘In this article, we study traffic flow in the presence of speed breaking structures. The speed breakers are typically used to reduce the local speed of vehicles near certain institutions such as schools and hospitals. Through a cellular automata model we study the impact of such structures on giobal traffic characteristics. The simulation results indicate that the presence of speed breakers could reduce the global flow under moderate global densities. However, under low and high global density traffic regime the presence of speed breakers does not have an impact on the global flow. Further the speed limit enforced by the speed breaker creates a phase distinction. For a given global density and slowdown probability, as the speed limit enforced by the speed breaker increases, the traffic moves from the reduced flow phase to maximum flow phase. This underlines the importance of proper design of these structures to avoid undesired flow restrictions.
基金the National Outstanding Young Scientists Foundation of China (Grant No. 50325519)
文摘For the three-dimensional (3-D) numerical study of photoresist etching processes, the 2-D dynamic cellular automata (CA) model has been successfully extended to a 3-D dynamic CA model. Only the boundary cells will be processed in the 3-D dy-namic CA model and the structure of “if-else” description in the simulation pro-gram is avoided to speed up the simulation. The 3-D dynamic CA model has found to be stable, fast and accurate for the numerical study of photoresist etching processes. The exposure simulation, post-exposure bake (PEB) simulation and etching simulation are integrated together to further investigate the performances of the CA model. Simulation results have been compared with the available ex-perimental results and the simulations show good agreement with the available experiments.
文摘Simulations of photoresist etching,aerial image,exposure,and post-bake processes are integrated to obtain a photolithography process simulation for microelectromechanical system(MEMS) and integrated circuit(IC) fabrication based on three-dimensional (3D) cellular automata(CA). The simulation results agree well with available experimental results. This indicates that the 3D dynamic CA model for the photoresist etching simulation and the 3D CA model for the post-bake simulation could be useful for the monolithic simulation of various lithography processes. This is determined to be useful for the device-sized fabrication process simulation of IC and MEMS.