In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular autom...In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular automation (CA) model was put forward by introducing meeting behavior to reflect the relation between safe meeting speed and road width.The numerical simulation results depict several relation curves between road section capacity,speed and road width under different directional distributions of traffic flow,as well as the curves between the major and minor direction saturation flow,speed and road width.These relation characteristics indicate that except the one-way road section capacity and speed remaining unchanged,other road section capacities and speeds under different directional distributions increase with the increase of road width.On narrow road,the two-way traffic capacity and speed are less than those of one-way traffic;on wide road,the two-way traffic capacity doubles that of one-way traffic,but their speeds are almost the same.As the directional distribution moves to an even distribution of 50/50,the major direction saturation flows and speeds as well as the minor direction speeds tend to decease,while the minor direction saturation flow tends to increase.展开更多
In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it ...In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.展开更多
A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to ...A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to predict crystallization behaviour that is linked to thermal and electrical simulations to enable the study of the data writing and erasing processes. The CA approach is shown to be able to predict the evolution of the microstructure during the rapid heating and cooling cycles pertinent to data storage technology, and maps crystallization behaviour on the nanoscale. A simple example based on possible future nonvolatile phase-change random access solid-state memory is presented.展开更多
A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrit...A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrite tip, interface curvature and anisotropy of the surface energy were extended to 3-D system in the model. Therefore, the model was able to describe the morphology evolution of 3-D dendrites. Then, the model was applied to simulate the mechanism of spacing adjustment for 3-D columnar dendrite growth, and the competitive growth of columnar dendrites with different preferred growth orientations under constant temperature gradient and pulling velocity. Directional solidification experiments of NH4Cl-H2O transparent alloy were performed. It was found that the simulated results compared well with the experimental results. Therefore, the model was reliable for simulating the 3-D dendrite growth of cubic system alloys.展开更多
Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, ...Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.展开更多
The collision process of a flying bird and the aircraft windshield was simulated by using movable cellular automata ( MCA) method to improve the structure design of aircrafts. The simulation results show that the whol...The collision process of a flying bird and the aircraft windshield was simulated by using movable cellular automata ( MCA) method to improve the structure design of aircrafts. The simulation results show that the whole strike process is performed in 4. 8 ms,the critical strike velocity for an aeronautic glass windshield is 360 km/h,the windshield vibrates and deforms in the collision,and after absorbing the kinetic energy,its temperature increases. The simulation results coincide with the experiment data better. It is clear that MCA method has more advantages than the usual methods of continuum mechanics.展开更多
Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbin...Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbine blade. Numerical simulation of the directional solidification process is an effective way to investigate the grain's growth and morphology,and hence to optimize the process. In this paper,a mathematical model was presented to study the directional solidified microstructures at different withdrawal rates. Ray-tracing method was applied to calculate the temperature variation of the blade. By using a Modified Cellular Automation(MCA) method and a simple linear interpolation method,the mushy zone and the microstructure evolution were studied in detail. Experimental validations were carried out at different withdrawal rates. The calculated cooling curves and microstructure agreed well with those experimental. It is indicated that the withdrawal rate affects the temperature distribution and growth rate of the grain directly,which determines the final size and morphology of the columnar grain. A moderate withdrawal rate can lead to high quality DS turbine blades for industrial application.展开更多
How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven.For this intent,this paper analyzed the heat distribution in the oven based on the basic operation princi...How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven.For this intent,this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section.Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission,based on the idea of utilizing cellular automation to simulate heat transfer process,used ANSYS software to proceed the numerical simulation analysis to the rectangular,round-cornered rectangular,elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans.The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.展开更多
基金Project(71171200) supported by the National Natural Science Foundation of China
文摘In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular automation (CA) model was put forward by introducing meeting behavior to reflect the relation between safe meeting speed and road width.The numerical simulation results depict several relation curves between road section capacity,speed and road width under different directional distributions of traffic flow,as well as the curves between the major and minor direction saturation flow,speed and road width.These relation characteristics indicate that except the one-way road section capacity and speed remaining unchanged,other road section capacities and speeds under different directional distributions increase with the increase of road width.On narrow road,the two-way traffic capacity and speed are less than those of one-way traffic;on wide road,the two-way traffic capacity doubles that of one-way traffic,but their speeds are almost the same.As the directional distribution moves to an even distribution of 50/50,the major direction saturation flows and speeds as well as the minor direction speeds tend to decease,while the minor direction saturation flow tends to increase.
文摘In this paper, we use the cellular automation model to imitate earthquake process and draw some conclusionsof general applicability. First, it is confirmed that earthquake process has some ordering characters, and it isshown that both the existence and their mutual arrangement of faults could obviously influence the overallcharacters of earthquake process. Then the characters of each stage of model evolution are explained withself-organized critical state theory. Finally, earthquake sequences produced by the models are analysed interms pf algorithmic complexity and the result shows that AC-values of algorithmic complexity could be usedto study earthquake process and evolution.
基金The authors acknowledge the support of the EU Framework 5 programme in supporting this work un-der the auspices of the PC-RAM project (IST-2001-32557).
文摘A novel approach to modelling phase-transition processes in phase change materials used for optical and electrical data storage applications is presented. The model is based on a cellular automaton (CA) approach to predict crystallization behaviour that is linked to thermal and electrical simulations to enable the study of the data writing and erasing processes. The CA approach is shown to be able to predict the evolution of the microstructure during the rapid heating and cooling cycles pertinent to data storage technology, and maps crystallization behaviour on the nanoscale. A simple example based on possible future nonvolatile phase-change random access solid-state memory is presented.
基金Projects (2005CB724105, 2011CB706801) supported by the National Basic Research Program of ChinaProjects (10477010, 51171089) supported by the National Natural Science Foundation of China+1 种基金Project (2007AA04Z141) supported by the High-Tech Research and Development Program of ChinaProjects (2009ZX04006-041-04, 2011ZX04014-052) supported by the Important National Science & Technology Specific
文摘A three-dimensional (3-D) modified cellular automaton (MCA) method was developed for simulating the dendrite morphology of cubic system alloys. Two-dimensional (2-D) equations of growth velocities of the dendrite tip, interface curvature and anisotropy of the surface energy were extended to 3-D system in the model. Therefore, the model was able to describe the morphology evolution of 3-D dendrites. Then, the model was applied to simulate the mechanism of spacing adjustment for 3-D columnar dendrite growth, and the competitive growth of columnar dendrites with different preferred growth orientations under constant temperature gradient and pulling velocity. Directional solidification experiments of NH4Cl-H2O transparent alloy were performed. It was found that the simulated results compared well with the experimental results. Therefore, the model was reliable for simulating the 3-D dendrite growth of cubic system alloys.
基金Projects(51274057,51474057) supported by the National Natural Science Foundation of ChinaProject(2012AA03A508) supported by the High-tech Research and Development Program of China
文摘Solidification structure is critical in the control of the mechanical properties and quality during the continuous casting process. The thermo-physical properties of 13 Cr steel added some rare metals, such as Mo, V, Nb, are measured to better understand the solidification structure of 13 Cr bloom. A computational model using CA-FE(cellular automation-finite element) method coupled with heat transfer model is developed to describe the solidification structure in continuous casting process. It is found that the calculated solidification structure is in good agreement with the observed data. The influence of casting speed and superheat on the solidification structure of the bloom is studied in detail. In order to obtain more equiaxed crystal ratio and low degree of the segregation in the bloom, the optimized casting speed 0.6 m/min and superheat less than 25 °C are determined for the caster. Using the optimized manufacturing parameters, these samples are 60% with the equiaxed zone ratio of 8%–10% and below the degree of segregation 1.05.
文摘The collision process of a flying bird and the aircraft windshield was simulated by using movable cellular automata ( MCA) method to improve the structure design of aircrafts. The simulation results show that the whole strike process is performed in 4. 8 ms,the critical strike velocity for an aeronautic glass windshield is 360 km/h,the windshield vibrates and deforms in the collision,and after absorbing the kinetic energy,its temperature increases. The simulation results coincide with the experiment data better. It is clear that MCA method has more advantages than the usual methods of continuum mechanics.
基金supported by the National Basic Research Program of China (Grant Nos. 2005CB724105, 2011CB706801)National Natural Science Foundation of China (Grant No. 10477010)+1 种基金National High Technology Research and Development Program of China (Grant No. 2007AA04Z141)Important National Science & Technology Specific Projects (Grant Nos. 2009ZX04006-041, 2011ZX04014-052)
文摘Directional solidified(DS) turbine blades are widely used in advanced gas turbine engine. The size and orientation of columnar grains have great influence on the high temperature property and performance of the turbine blade. Numerical simulation of the directional solidification process is an effective way to investigate the grain's growth and morphology,and hence to optimize the process. In this paper,a mathematical model was presented to study the directional solidified microstructures at different withdrawal rates. Ray-tracing method was applied to calculate the temperature variation of the blade. By using a Modified Cellular Automation(MCA) method and a simple linear interpolation method,the mushy zone and the microstructure evolution were studied in detail. Experimental validations were carried out at different withdrawal rates. The calculated cooling curves and microstructure agreed well with those experimental. It is indicated that the withdrawal rate affects the temperature distribution and growth rate of the grain directly,which determines the final size and morphology of the columnar grain. A moderate withdrawal rate can lead to high quality DS turbine blades for industrial application.
文摘How to use the oven to bake delicious food is the most concerned problem of the designers and users of the oven.For this intent,this paper analyzed the heat distribution in the oven based on the basic operation principles and proceeded the data simulation of the temperature distribution on the rack section.Constructing the differential equation model of the temperature distribution changes in the pan when the oven works based on the heat radiation and heat transmission,based on the idea of utilizing cellular automation to simulate heat transfer process,used ANSYS software to proceed the numerical simulation analysis to the rectangular,round-cornered rectangular,elliptical and circular pans and giving out the instantaneous temperature distribution of the corresponding shapes of the pans.The temperature distribution of the rectangular and circular pans proves that the product gets overcooked easily at the corners and edges of rectangular pans but not of a round pan.