Vehicular communication is the backbone of future Intelligent Transportation Systems(ITS).It offers a network-based solution for vehicle safety,cooperative awareness,and traffic management applications.For safety appl...Vehicular communication is the backbone of future Intelligent Transportation Systems(ITS).It offers a network-based solution for vehicle safety,cooperative awareness,and traffic management applications.For safety applications,Basic Safety Messages(BSM)containing mobility information is shared by the vehicles in their neighborhood to continuously monitor other nearby vehicles and prepare a local traffic map.BSMs are shared using mode 4 of Cellular V2X(C-V2X)communications in which resources are allocated in an ad hoc manner.However,the strict packet transmission requirements of BSM and hidden node problem causes packet collisions in a vehicular network,thus reducing the reliability of safety applications.Moreover,as vehicles choose the transmission resources in a distributed manner in mode 4 of CV2X,the packet collision problem is further aggravated.This paper presents a novel solution in the form of a Space Division Multiple Access(SDMA)protocol that intelligently schedules BSM transmissions using vehicle position data to reduce concurrent transmissions from hidden node interferers.The proposed protocol works by dividing road segments into clusters and subclusters.Several sub-frames are allocated to a cluster and these sub-frames are reused after a certain distance.Within a cluster,sub-channels are allocated to sub-clusters.We implement the proposed SDMA protocol and evaluate its performance in a highway vehicular network.Simulation results show that the proposed SDMA protocol outperforms standard Sensing-Based Semi Persistent Scheduling(SB-SPS)in terms of safety range and packet delay.展开更多
With the rapid development of vehicular access network,three different communication modes have emerged as the fundamental technologies in cellular V2X,i.e.,cellular mode,reuse mode,and dedicated mode,through differen...With the rapid development of vehicular access network,three different communication modes have emerged as the fundamental technologies in cellular V2X,i.e.,cellular mode,reuse mode,and dedicated mode,through different spectrum sharing strategies.However,how to conduct the multi-mode access management for cellular V2X is challenging considering the heterogeneity of network resource and the diverse vehicular services demands.In this paper,we investigate a software defined multi-mode access management framework in cellular V2X,which is capable of providing flexibility and programmability for dynamic spectrum sharing in vehicular access.We first conduct the performance analysis of multi-mode communications in cellular V2X.Then,we design an analytic hierarchy process(AHP)based evolutionary game to optimize the multi-mode access management solution,in which four performance indicators are jointly considered,including transmission rate,interference,transmission delay,and energy consumption.Extensive experimental simulations have validated the superiority of the proposed algorithm,and illustrated the impact of different vehicle access schemes,signal-to-interference-plus-noise ratio(SINR)threshold and other parameters on the performance of cellular V2X.展开更多
蜂窝车联网(C-V2X)环境中,存在车辆高速移动导致无法获取完备的信道状态信息(channel state information,CSI),从而干扰车辆复用蜂窝网络资源的问题。在已知部分CSI和满足车辆到设施(vehicle to infrastructure,V2I)及车辆到车辆(vehicl...蜂窝车联网(C-V2X)环境中,存在车辆高速移动导致无法获取完备的信道状态信息(channel state information,CSI),从而干扰车辆复用蜂窝网络资源的问题。在已知部分CSI和满足车辆到设施(vehicle to infrastructure,V2I)及车辆到车辆(vehicle to vehicle,V2V)的可靠性约束的条件下,研究最大化系统遍历总速率的资源分配优化问题,提出联合功率控制和信道复用的资源分配算法。该算法根据可靠性约束,使用几何规划分析功率可行域,求出任意单个复用对的最优功率控制。该算法将信道复用转换为最大权重二分图匹配问题,将复用对的遍历速率作为二分图的权重,并使用KM(Kuhn Munkres)算法进行求解。仿真结果表明,所提出的资源分配算法较其他算法,可以在保证车辆可靠通信的前提下优化资源分配,并有效控制干扰,从而提高系统遍历总速率。展开更多
C-V2X或LTE-V作为车联网(Vehicular Communication Networks, VCN)领域的新兴通信技术,能够有效提高道路安全和交通通信效率。在3GPP发布的R14标准中,引入不依赖于任何蜂窝基础设施的直连通信模式4,在模式4中车辆自主选择和管理其无线...C-V2X或LTE-V作为车联网(Vehicular Communication Networks, VCN)领域的新兴通信技术,能够有效提高道路安全和交通通信效率。在3GPP发布的R14标准中,引入不依赖于任何蜂窝基础设施的直连通信模式4,在模式4中车辆自主选择和管理其无线电资源。在不结合实际的交通场景的情况下对C-V2X模式4通信性能进行评估,提出了一种多信道传播模型下C-V2X模式4通信性能分析模型,验证了不同传输参数以及不同信号传播信道对性能的影响,试图设计更为完备的分析模型,探索参数的影响并调整参数来进一步提升C-V2X模式4通信性能的可能性。展开更多
仅通过车辆传感器在高速公路上实现自动驾驶是可能的,但是在复杂的城市环境中实现自动驾驶仍存在挑战。而蜂窝车联网(Cellular-Vehicle to Everything,C-V2X)是应对此挑战的有效技术,其也引起了广泛关注。然而,目前C-V2X模式4没有开源...仅通过车辆传感器在高速公路上实现自动驾驶是可能的,但是在复杂的城市环境中实现自动驾驶仍存在挑战。而蜂窝车联网(Cellular-Vehicle to Everything,C-V2X)是应对此挑战的有效技术,其也引起了广泛关注。然而,目前C-V2X模式4没有开源的仿真软件。为此,基于离散事件网络仿真软件NS-3,提出开源的C-V2X模式4的仿真软件。构建了最拥塞的场景和基于微交通仿真器SUMO产生的城市Manhattan网格场景,进而分析仿真器的性能。同时,分析了资源分配间隔和资源重选率对数据包接收率的影响。展开更多
作为未来自动驾驶汽车的核心技术之一,蜂窝车联网(Cellular-V2X,C-V2X)在快速普及应用的同时,还面临着一系列与网络连通性相关的发展痛点,如车辆移动性、网络覆盖、频谱资源等问题。C-V2X车路协同连通性直接反映了C-V2X网络联网车辆的...作为未来自动驾驶汽车的核心技术之一,蜂窝车联网(Cellular-V2X,C-V2X)在快速普及应用的同时,还面临着一系列与网络连通性相关的发展痛点,如车辆移动性、网络覆盖、频谱资源等问题。C-V2X车路协同连通性直接反映了C-V2X网络联网车辆的整体性能,对于保证信息在C-V2X网络内实现远距离、自适应、低时延、高可靠传输具有重要意义。不同于传统的蜂窝移动通信网络,C-V2X联网车辆具有移动速度快、节点间链路持续时间短暂、无线通信环境可预测性强、移动模型受限于道路拓扑等特点,在高效利用频谱进行通信的同时,还具有自组织网络的无中心和自组织等诸多特性。首先简要介绍了C-V2X的优点与特点,包括C-V2X的进展与结构体系;然后介绍了C-V2X车联网中车路协同连通性的定义及相关发展约束,在此基础上对C-V2X网络连通性研究中基于交通场景、通信方式选择、路侧单元(Road Side Unit,RSU)位置部署、功率控制、模型驱动的研究方法进行了总结与分类;最后探讨了C-V2X的发展趋势,对其未来应用进行展望。展开更多
蜂窝车联网(cellular vehicle to everything,C-V2X)是智能交通系统的关键技术之一,车辆通过与周围的信息实体实时交换信息以实现保障城市交通安全、提高城市交通效率等目的,实现V2X通信的基本需求。在NR-V2X定义的场景中,它还将支持自...蜂窝车联网(cellular vehicle to everything,C-V2X)是智能交通系统的关键技术之一,车辆通过与周围的信息实体实时交换信息以实现保障城市交通安全、提高城市交通效率等目的,实现V2X通信的基本需求。在NR-V2X定义的场景中,它还将支持自动驾驶、远程驾驶、车辆编队、扩展传感四大类先进V2X服务。通过OPNET搭建5G-V2X系统级仿真平台,针对基于PC5接口和Uu接口的车联网通信两大通信模式对5G蜂窝车联网的系统性能进行分析研究,给出相应的性能分析和评估结果,并提出改进建议,对5G蜂窝车联网的研究方向和实际系统部署都具有重要的指导作用。展开更多
蜂窝车辆联网(Cellular-Vehicle to Everything,C-V2X)使车与周围的一切物体连通,为车辆用户提供了安全、可靠的服务。选择合适的通信接口能够减少通信设备的功耗。为此,提出基于混合整数线性规划的优化功率消耗策略(Optimizing Power C...蜂窝车辆联网(Cellular-Vehicle to Everything,C-V2X)使车与周围的一切物体连通,为车辆用户提供了安全、可靠的服务。选择合适的通信接口能够减少通信设备的功耗。为此,提出基于混合整数线性规划的优化功率消耗策略(Optimizing Power Consumption Strategy Based on Mixed Integer Linear Programming,PC-MILP),进而通过选择适宜的通信接口,平衡车辆用户与蜂窝设备间功率消耗。先建立目标函数,再利用混合整数线性规划求解器CPLEXMILP求解,进而最小化功率消耗。仿真结果表明,相比于同类的两步能量优化策略(Two-Stage Energy Optimization TSEO),提出的PC-MILP模型减少了系统能耗。展开更多
文摘Vehicular communication is the backbone of future Intelligent Transportation Systems(ITS).It offers a network-based solution for vehicle safety,cooperative awareness,and traffic management applications.For safety applications,Basic Safety Messages(BSM)containing mobility information is shared by the vehicles in their neighborhood to continuously monitor other nearby vehicles and prepare a local traffic map.BSMs are shared using mode 4 of Cellular V2X(C-V2X)communications in which resources are allocated in an ad hoc manner.However,the strict packet transmission requirements of BSM and hidden node problem causes packet collisions in a vehicular network,thus reducing the reliability of safety applications.Moreover,as vehicles choose the transmission resources in a distributed manner in mode 4 of CV2X,the packet collision problem is further aggravated.This paper presents a novel solution in the form of a Space Division Multiple Access(SDMA)protocol that intelligently schedules BSM transmissions using vehicle position data to reduce concurrent transmissions from hidden node interferers.The proposed protocol works by dividing road segments into clusters and subclusters.Several sub-frames are allocated to a cluster and these sub-frames are reused after a certain distance.Within a cluster,sub-channels are allocated to sub-clusters.We implement the proposed SDMA protocol and evaluate its performance in a highway vehicular network.Simulation results show that the proposed SDMA protocol outperforms standard Sensing-Based Semi Persistent Scheduling(SB-SPS)in terms of safety range and packet delay.
基金supported by the National Natural Science Foundation of China under Grant 61871211。
文摘With the rapid development of vehicular access network,three different communication modes have emerged as the fundamental technologies in cellular V2X,i.e.,cellular mode,reuse mode,and dedicated mode,through different spectrum sharing strategies.However,how to conduct the multi-mode access management for cellular V2X is challenging considering the heterogeneity of network resource and the diverse vehicular services demands.In this paper,we investigate a software defined multi-mode access management framework in cellular V2X,which is capable of providing flexibility and programmability for dynamic spectrum sharing in vehicular access.We first conduct the performance analysis of multi-mode communications in cellular V2X.Then,we design an analytic hierarchy process(AHP)based evolutionary game to optimize the multi-mode access management solution,in which four performance indicators are jointly considered,including transmission rate,interference,transmission delay,and energy consumption.Extensive experimental simulations have validated the superiority of the proposed algorithm,and illustrated the impact of different vehicle access schemes,signal-to-interference-plus-noise ratio(SINR)threshold and other parameters on the performance of cellular V2X.
文摘蜂窝车联网(C-V2X)环境中,存在车辆高速移动导致无法获取完备的信道状态信息(channel state information,CSI),从而干扰车辆复用蜂窝网络资源的问题。在已知部分CSI和满足车辆到设施(vehicle to infrastructure,V2I)及车辆到车辆(vehicle to vehicle,V2V)的可靠性约束的条件下,研究最大化系统遍历总速率的资源分配优化问题,提出联合功率控制和信道复用的资源分配算法。该算法根据可靠性约束,使用几何规划分析功率可行域,求出任意单个复用对的最优功率控制。该算法将信道复用转换为最大权重二分图匹配问题,将复用对的遍历速率作为二分图的权重,并使用KM(Kuhn Munkres)算法进行求解。仿真结果表明,所提出的资源分配算法较其他算法,可以在保证车辆可靠通信的前提下优化资源分配,并有效控制干扰,从而提高系统遍历总速率。
文摘C-V2X或LTE-V作为车联网(Vehicular Communication Networks, VCN)领域的新兴通信技术,能够有效提高道路安全和交通通信效率。在3GPP发布的R14标准中,引入不依赖于任何蜂窝基础设施的直连通信模式4,在模式4中车辆自主选择和管理其无线电资源。在不结合实际的交通场景的情况下对C-V2X模式4通信性能进行评估,提出了一种多信道传播模型下C-V2X模式4通信性能分析模型,验证了不同传输参数以及不同信号传播信道对性能的影响,试图设计更为完备的分析模型,探索参数的影响并调整参数来进一步提升C-V2X模式4通信性能的可能性。
文摘仅通过车辆传感器在高速公路上实现自动驾驶是可能的,但是在复杂的城市环境中实现自动驾驶仍存在挑战。而蜂窝车联网(Cellular-Vehicle to Everything,C-V2X)是应对此挑战的有效技术,其也引起了广泛关注。然而,目前C-V2X模式4没有开源的仿真软件。为此,基于离散事件网络仿真软件NS-3,提出开源的C-V2X模式4的仿真软件。构建了最拥塞的场景和基于微交通仿真器SUMO产生的城市Manhattan网格场景,进而分析仿真器的性能。同时,分析了资源分配间隔和资源重选率对数据包接收率的影响。
文摘作为未来自动驾驶汽车的核心技术之一,蜂窝车联网(Cellular-V2X,C-V2X)在快速普及应用的同时,还面临着一系列与网络连通性相关的发展痛点,如车辆移动性、网络覆盖、频谱资源等问题。C-V2X车路协同连通性直接反映了C-V2X网络联网车辆的整体性能,对于保证信息在C-V2X网络内实现远距离、自适应、低时延、高可靠传输具有重要意义。不同于传统的蜂窝移动通信网络,C-V2X联网车辆具有移动速度快、节点间链路持续时间短暂、无线通信环境可预测性强、移动模型受限于道路拓扑等特点,在高效利用频谱进行通信的同时,还具有自组织网络的无中心和自组织等诸多特性。首先简要介绍了C-V2X的优点与特点,包括C-V2X的进展与结构体系;然后介绍了C-V2X车联网中车路协同连通性的定义及相关发展约束,在此基础上对C-V2X网络连通性研究中基于交通场景、通信方式选择、路侧单元(Road Side Unit,RSU)位置部署、功率控制、模型驱动的研究方法进行了总结与分类;最后探讨了C-V2X的发展趋势,对其未来应用进行展望。
文摘蜂窝车联网(cellular vehicle to everything,C-V2X)是智能交通系统的关键技术之一,车辆通过与周围的信息实体实时交换信息以实现保障城市交通安全、提高城市交通效率等目的,实现V2X通信的基本需求。在NR-V2X定义的场景中,它还将支持自动驾驶、远程驾驶、车辆编队、扩展传感四大类先进V2X服务。通过OPNET搭建5G-V2X系统级仿真平台,针对基于PC5接口和Uu接口的车联网通信两大通信模式对5G蜂窝车联网的系统性能进行分析研究,给出相应的性能分析和评估结果,并提出改进建议,对5G蜂窝车联网的研究方向和实际系统部署都具有重要的指导作用。
文摘蜂窝车辆联网(Cellular-Vehicle to Everything,C-V2X)使车与周围的一切物体连通,为车辆用户提供了安全、可靠的服务。选择合适的通信接口能够减少通信设备的功耗。为此,提出基于混合整数线性规划的优化功率消耗策略(Optimizing Power Consumption Strategy Based on Mixed Integer Linear Programming,PC-MILP),进而通过选择适宜的通信接口,平衡车辆用户与蜂窝设备间功率消耗。先建立目标函数,再利用混合整数线性规划求解器CPLEXMILP求解,进而最小化功率消耗。仿真结果表明,相比于同类的两步能量优化策略(Two-Stage Energy Optimization TSEO),提出的PC-MILP模型减少了系统能耗。