Each eukaryotic cell of multicellular organisms must be able to maintain its integrity by sensing both external and internal stimuli. The primary goal of the generated response mechanism is to drive back the system to...Each eukaryotic cell of multicellular organisms must be able to maintain its integrity by sensing both external and internal stimuli. The primary goal of the generated response mechanism is to drive back the system to the former or to a new homeostatic state. Moreover, the response has to provide an accurate survival-or-death decision to avoid any “misunderstanding” and its unwanted consequences. New data revealed that a systems-level crosstalk of molecular networks has an essential role in achieving the correct characteristic of the response. Although many molecular components of these processes already have been revealed, several elements and regulatory connections of crosstalk are still missing. These “gaps” of the complex control networks make hardly impossible to present comprehensive models. Therefore we approach the questions from a systems biology aspect by combining the experimental results with the special technique of mathematical modelling. In this short report we discuss some novel and preliminary data gained by this approach on the crosstalk between life and death decisions under cellular stress, to get a systems biological view of these networks.展开更多
When exposing to environmental stress or internal damage, such as genotoxic stress, oxidative stress, and heat stress, cells produce a series of adaptive responses called cellular stress responses. The major proteins ...When exposing to environmental stress or internal damage, such as genotoxic stress, oxidative stress, and heat stress, cells produce a series of adaptive responses called cellular stress responses. The major proteins involved in cellular stress are heat shock proteins (HSPs).展开更多
A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is require...A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress-strain history curves, from which the dynamic stress-strain states are obtained. The present results reveal that the dynamic-rigid-plastic hardening (D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress-strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.展开更多
Polymyxin B is widely used antibiotic in the clinic for resistant Gram-negative infections. In addition, polymyxin B-immobilized hemoperfusion cartridge has been used for endotoxin removal therapy in patients with sep...Polymyxin B is widely used antibiotic in the clinic for resistant Gram-negative infections. In addition, polymyxin B-immobilized hemoperfusion cartridge has been used for endotoxin removal therapy in patients with septic shock. The aim of this study was to investigate the anti-fibrotic and anti-cellular hypertrophic effects of polymyxin B, and further to explore its possible mechanism. Polymyxin B (3, 10 μM) significantly inhibited stress fiber formation induced by angiotensin II (Ang II) in rat heart-derived H9c2 cells. Furthermore, polymyxin B (1 - 10 μM) showed a potent inhibitory effect on Ang II-induced cellular hypertrophy in H9c2 cells. Under the mechanism study, the inhibitory activities of polymyxin B against kinases involved in cellular hypertrophy such as AKT1, CAMK, GRK5, GSK3β, MLCK, PKC, PKD2, AMPK, ROCK2, p70S6K, SGK1were evaluated. Polymyxin B possesses a potent G protein related kinase 5 (GKR5) inhibitory activity with IC50 value of 1.1 μM, and has an ATP non-competitive inhibitory mode. Taken together, these results indicate that polymyxin B alleviates Ang II-induced stress fiber formation and cellular hypertrophy, and propose that one mechanism underlying these effects involves inhibition of the GRK5 pathway.展开更多
Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple st...Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple stress tolerance. In this study, AKR1 gene expression was studied in roots and leaves of foxtail millet subjected to different regimes of PEG- and NaCl-stress for seven days. The quantitative Real-time PCR expression analysis in both root and leaves showed upregulation of AKR1 gene during PEG and salt stress. A close correlation exits between expression of AKR1 gene and the rate of lipid peroxidation along with the retardation of growth. Tissue-specific differences were found in the AKR1 gene expression to the stress intensities studied. The reduction in root and shoot growth under both stress conditions were dependent on stress severity. The level of lipid peroxidation as indicated by MDA formation was significantly increased in roots and leaves along with increased stress levels. Finally, these findings support the early responsive nature of AKR1 gene and seem to be associated at least in part with its ability to contribute in antioxidant defence related pathways which could provide a better protection against oxidative stress under stress conditions.展开更多
Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have un...Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions.展开更多
Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as e...Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms,including humans.However,it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses.Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion,inhalation,or skin contact.Most ingested plastics are excreted from the body,but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route.Small-sized polystyrene-nanoplastics can enter cells by endocytosis,accumulate in the cytoplasm,and cause various cellular stresses,such as inflammation with increased pro-inflammatory cytokine production,oxidative stress with generation of reactive oxygen species,and mitochondrial dysfunction.They induce autophagy activation and autophagosome formation,but autophagic flux may be impaired due to lysosomal dysfunction.Unless permanently exposed to polystyrene-nanoplastics,they can be removed from cells by exocytosis and subsequently restore cellular function.However,neurons are very susceptible to this type of stress,thus even acute exposure can lead to neurodegeneration without recovery.This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity.Furthermore,in this review,based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons,future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested.展开更多
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct ...The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.展开更多
文摘Each eukaryotic cell of multicellular organisms must be able to maintain its integrity by sensing both external and internal stimuli. The primary goal of the generated response mechanism is to drive back the system to the former or to a new homeostatic state. Moreover, the response has to provide an accurate survival-or-death decision to avoid any “misunderstanding” and its unwanted consequences. New data revealed that a systems-level crosstalk of molecular networks has an essential role in achieving the correct characteristic of the response. Although many molecular components of these processes already have been revealed, several elements and regulatory connections of crosstalk are still missing. These “gaps” of the complex control networks make hardly impossible to present comprehensive models. Therefore we approach the questions from a systems biology aspect by combining the experimental results with the special technique of mathematical modelling. In this short report we discuss some novel and preliminary data gained by this approach on the crosstalk between life and death decisions under cellular stress, to get a systems biological view of these networks.
基金supported by the National Natural Science Foundation of China (31571321, 31171428)the National Key Research and Develepment Program of China (2016YFE0129200)+1 种基金the Institute of the Fundamental Research Funds of Shandong University (2015JC036)the Open Projects of State Key Laboratory of Molecular Oncology (SKL-KF-2017-17)
文摘When exposing to environmental stress or internal damage, such as genotoxic stress, oxidative stress, and heat stress, cells produce a series of adaptive responses called cellular stress responses. The major proteins involved in cellular stress are heat shock proteins (HSPs).
基金supported by the National Natural Science Foundation of China(11372308 and 11372307)the Fundamental Research Funds for the Central Universities(WK2480000001)
文摘A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress-strain history curves, from which the dynamic stress-strain states are obtained. The present results reveal that the dynamic-rigid-plastic hardening (D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress-strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.
文摘Polymyxin B is widely used antibiotic in the clinic for resistant Gram-negative infections. In addition, polymyxin B-immobilized hemoperfusion cartridge has been used for endotoxin removal therapy in patients with septic shock. The aim of this study was to investigate the anti-fibrotic and anti-cellular hypertrophic effects of polymyxin B, and further to explore its possible mechanism. Polymyxin B (3, 10 μM) significantly inhibited stress fiber formation induced by angiotensin II (Ang II) in rat heart-derived H9c2 cells. Furthermore, polymyxin B (1 - 10 μM) showed a potent inhibitory effect on Ang II-induced cellular hypertrophy in H9c2 cells. Under the mechanism study, the inhibitory activities of polymyxin B against kinases involved in cellular hypertrophy such as AKT1, CAMK, GRK5, GSK3β, MLCK, PKC, PKD2, AMPK, ROCK2, p70S6K, SGK1were evaluated. Polymyxin B possesses a potent G protein related kinase 5 (GKR5) inhibitory activity with IC50 value of 1.1 μM, and has an ATP non-competitive inhibitory mode. Taken together, these results indicate that polymyxin B alleviates Ang II-induced stress fiber formation and cellular hypertrophy, and propose that one mechanism underlying these effects involves inhibition of the GRK5 pathway.
文摘Foxtail millet (Setaria italica L.) is a drought-tolerant millet crop of arid and semi-arid regions. Aldo-keto reductases (AKRs) are significant part of plant defence mechanism, having an ability to confer multiple stress tolerance. In this study, AKR1 gene expression was studied in roots and leaves of foxtail millet subjected to different regimes of PEG- and NaCl-stress for seven days. The quantitative Real-time PCR expression analysis in both root and leaves showed upregulation of AKR1 gene during PEG and salt stress. A close correlation exits between expression of AKR1 gene and the rate of lipid peroxidation along with the retardation of growth. Tissue-specific differences were found in the AKR1 gene expression to the stress intensities studied. The reduction in root and shoot growth under both stress conditions were dependent on stress severity. The level of lipid peroxidation as indicated by MDA formation was significantly increased in roots and leaves along with increased stress levels. Finally, these findings support the early responsive nature of AKR1 gene and seem to be associated at least in part with its ability to contribute in antioxidant defence related pathways which could provide a better protection against oxidative stress under stress conditions.
基金supported by National Council of Science and Technology(CONACYT)(grants FC 2016/2672 and FOSISS 272757),INMEGEN(09/2017/I)the Ministry of Education,Science,Technology and Innovation of Mexico City(SECTEI)(grant 228/2021).
文摘Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions.
基金supported by the Basic Study and Interdisciplinary R&D Foundation of the University of Seoul(2019)grants,Nos.201910021035202006251003(both to KYR and JC)。
文摘Many types of plastic products,including polystyrene,have long been used in commercial and industrial applications.Microplastics and nanoplastics,plastic particles derived from these plastic products,are emerging as environmental pollutants that can pose health risks to a wide variety of living organisms,including humans.However,it is not well understood how microplastics and nanoplastics affect cellular functions and induce stress responses.Humans can be exposed to polystyrene-microplastics and polystyrene-nanoplastics through ingestion,inhalation,or skin contact.Most ingested plastics are excreted from the body,but inhaled plastics may accumulate in the lungs and can even reach the brain via the nose-to-brain route.Small-sized polystyrene-nanoplastics can enter cells by endocytosis,accumulate in the cytoplasm,and cause various cellular stresses,such as inflammation with increased pro-inflammatory cytokine production,oxidative stress with generation of reactive oxygen species,and mitochondrial dysfunction.They induce autophagy activation and autophagosome formation,but autophagic flux may be impaired due to lysosomal dysfunction.Unless permanently exposed to polystyrene-nanoplastics,they can be removed from cells by exocytosis and subsequently restore cellular function.However,neurons are very susceptible to this type of stress,thus even acute exposure can lead to neurodegeneration without recovery.This review focuses specifically on recent advances in research on polystyrene-nanoplastic-induced cytotoxicity and neurotoxicity.Furthermore,in this review,based on mechanistic studies of polystyrene-nanoplastics at the cellular level other than neurons,future directions for overcoming the negative effects of polystyrene-nanoplastics on neurons were suggested.
基金supported by the National Natural Science Foundation of China (Grants 11372308, 11372307)the Fundamental Research Funds for the Central Universities (Grant WK2480000001)
文摘The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored.The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.