期刊文献+
共找到886篇文章
< 1 2 45 >
每页显示 20 50 100
A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release
1
作者 Verônica Távilla Ferreira Silva Adriane Maria Ferreira Milagres 《Journal of Renewable Materials》 EI CAS 2024年第3期539-551,共13页
This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions o... This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp.Our goal was to determine the contributions of xylanase(X)and endoglucanase(EG)in the treatment of pulp,specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid(DNS)test.Predominantly,the release of soluble reducing sugars(RSSol)was enhanced after xylanase treatment,while endoglucanase(EG)treatment led to changes in insoluble reducing sugars(RSIns).The maximum synergism was observed for RSIns when a high ratio of endoglucanase to xylanase(320EG:5X/g pulp)was used.The relative contribution of endoglucanase to RSins was determined to be 15.6%of the total reducing sugar.The viscosity of pulps treated with xylanase decreased only by 7%,whereas endoglucanase treatment significantly reduced viscosity by 45%.Modifications in the particle size were observed after pulp treatment with the combination of endoglucanase and xylanase.In summary,the DNS test is a rapid and effective method for evaluating the efficiency of enzyme treatments on pulps.The measurement of RSIns correlates with changes in pulp viscosity to different extents,providing valuable insights into the effectiveness of enzyme treatments. 展开更多
关键词 ENDOGLUCANASE XYLANASE cellulose fiber PULP synergism
下载PDF
Rational Design of Cellulosic Triboelectric Materials for Self‑Powered Wearable Electronics
2
作者 Xiangjiang Meng Chenchen Cai +4 位作者 Bin Luo Tao Liu Yuzheng Shao Shuangfei Wang Shuangxi Nie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期309-354,共46页
With the rapid development of the Internet of Things and flexible electronic technologies,there is a growing demand for wireless,sustainable,multifunctional,and independently operating self-powered wearable devices.Ne... With the rapid development of the Internet of Things and flexible electronic technologies,there is a growing demand for wireless,sustainable,multifunctional,and independently operating self-powered wearable devices.Nevertheless,structural flexibility,long operating time,and wearing comfort have become key requirements for the widespread adoption of wearable electronics.Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing.Compared with rigid electronics,cellulosic self-powered wearable electronics have significant advantages in terms of flexibility,breathability,and functionality.In this paper,the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed.The interfacial characteristics of cellulose are introduced from the top-down,bottom-up,and interfacial characteristics of the composite material preparation process.Meanwhile,the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented.Furthermore,the design strategies of triboelectric materials such as surface functionalization,interfacial structure design,and vacuum-assisted self-assembly are systematically discussed.In particular,cellulosic self-powered wearable electronics in the fields of human energy harvesting,tactile sensing,health monitoring,human–machine interaction,and intelligent fire warning are outlined in detail.Finally,the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed. 展开更多
关键词 Cellulose Triboelectric nanogenerator Triboelectric materials Self-powered sensing Wearable electronics
下载PDF
Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage 被引量:8
3
作者 Fangqian Wang Denghao Ouyang +3 位作者 Ziyuan Zhou Samuel JPage Dehua Liu Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期247-280,I0007,共35页
Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid... Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage. 展开更多
关键词 Lignocellulosic biomass CELLULOSE LIGNIN Power generation Energy storage Electrode materials
下载PDF
Effects of protein and lignin on cellulose and xylan anaylses of lignocellulosic biomass 被引量:4
4
作者 James MacLellan Rui Chen +3 位作者 Zhengbo Yue Robert Kraemer Yan Liu Wei Liao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1268-1275,共8页
Interactions of lignocellulosic components during fiber analysis were investigated using the highly adopted compositional analysis procedure from the National Renewable Energy Laboratory(NREL),USA.Synthetic feedstoc... Interactions of lignocellulosic components during fiber analysis were investigated using the highly adopted compositional analysis procedure from the National Renewable Energy Laboratory(NREL),USA.Synthetic feedstock samples were used to study the effects of lignin/protein,cellulose/protein,and xylan/protein interaction on carbohydrate analysis.Disregarding structural influence in the synthetic samples,lignin and protein components were the most significant(P〈0.05)factors on cellulose analysis.Measured xylan was consistent and unaffected by content variation throughout the synthetic analysis.Validation of the observed relationships from synthetic feedstocks was fulfilled using real lignocellulosic feedstocks:corn stover,poplar,and alfalfa,in which similar results have been obtained,excluding cellulose analysis of poplar under higher protein content and xylan analysis of alfalfa under higher protein content.The results elucidated that according to their protein and lignin contents of different lignocellulosic materials,accuracy of the NREL method on cellulose and xylan analyses could be improved by applying a stronger extraction step to replace water/ethanol extraction. 展开更多
关键词 lignocellulosic biomass CELLULOSE XYLAN LIGNIN PROTEIN
下载PDF
Interaction between PCC Filler and Cellulosic Fiber in Fiber/Filler Co-refining System 被引量:5
5
作者 Sheng Qiang Shunxi Song +3 位作者 Peiyao Wang Yujie Shi Linhao Li Haitang Liu 《Paper And Biomaterials》 CAS 2021年第4期30-37,共8页
Mineral fillers are important for conserving raw fiber materials and reducing production costs in the paper industry.However,the increase in filler content will inevitably result in strength reduction,which limits the... Mineral fillers are important for conserving raw fiber materials and reducing production costs in the paper industry.However,the increase in filler content will inevitably result in strength reduction,which limits the adding amount of filler in paper production.In this study,we designed a cellulose fiber/filler co-refining approach to improve the strength and optical properties of paper;moreover,the synergistic interaction between fibers and precipitated calcium carbonate(PCC)fillers in the co-refining process was investigated.Results of fiber separation and PCC particle size analysis showed that,compared with conventional refining,the content of fines increased,whereas the PCC particle size decreased.More importantly,composites were formed between the PCC and fines,which promoted strength improvement of paper.Physical tests show that the tensile index of paper with 15%PCC content increased by 22%compared with that of the paper filled by conventional method,whereas the brightness and opacity of paper improved by fiber/filler co-refining for a specified filler content.These findings provide a basis for the further development of co-refining filling technology. 展开更多
关键词 cellulosic fiber mineral filler filler composite paper strength optical properties
下载PDF
Physico-Chemical and Thermal Characterization of Some Lignocellulosic Fibres: <i>Ananas comosus</i>(AC), <i>Neuropeltis acuminatas</i>(NA) and <i>Rhecktophyllum camerunense</i>(RC) 被引量:3
6
作者 Achille Désiré Omgba Betene Fabien Ebanda Betene +3 位作者 Florian Martoïa Pierre J. J. Dumont Ateba Atangana Pierre Marcel Anicet Noah 《Journal of Minerals and Materials Characterization and Engineering》 2020年第4期205-222,共18页
This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of <i>Rhecktophyllum camerunense</i> (RC), <i>Neuropeltis acuminatas</i> (NA) an... This paper focuses on the study of the physical, biochemical, structural, and thermal properties of plant fibres of <i>Rhecktophyllum camerunense</i> (RC), <i>Neuropeltis acuminatas</i> (NA) and <i>Ananas</i> <i>comosus</i> (AC) from the equatorial region of Cameroon. The traditional use of these fibres inspired researchers to investigated their properties. This study aims at improving the state of knowledge with a view to diversifying applications. The fibres are extracted by retting. Then, their apparent density was measured following the ASTM D792 standard and their water moisture absorption and moisture content were also evaluated. Their molecular structure was studied by ATR-FTIR spectroscopy. A quantitative analysis of the biochemical composition was performed according to the analytical technique for the pulp and paper industry (TAPPI). A TGA/DSC analysis was also performed. The results reveal that the AC, NA and RC fibres have densities of 1.26 ± 1.06, 0.846 ± 0.13 and 0.757 ± 0.08 g&#183;cm<sup>-3</sup> respectively. They are also hydrophilic with a water absorption rate of 188.64 ± 11.94%, 276.16% ± 8.07% and 198.17% ± 20%. They have a moisture content of 12.21%, 10.36% and 9.37%. The studied fibres exhibit functional groups that are related to the presence of hemicellulose, pectin, lignin and cellulose. The cellulose crystallinity index was found to be 67.99%, 46.5% and 59.72% respectively. The fibres under study have the following chemical composition: an extractive content of 3.07%, 14.77% and 8.74%;a pectin content of 4.15%, 7.69% and 3.45%;a hemicellulose content of 4.90%, 15.33% and 7.42%;a cellulose content of 68.11%, 36.08% and 65.15%;a lignin content of 12.01%, 25.15% and 16.2%;and an ash content of 0.27%, 1.53% and 0.47% respectively. The thermal transitions observed on the thermograms correlate with the TAPPI chemical composition. It is observed that these fibres are thermally stable up to temperatures of 200°C, 220°C and 285°C. These results make it possible to envisage uses similar to those of sisal, hemp and flax fibres. 展开更多
关键词 Lignocellulosic Fibre Rhecktophyllum camerunense Neuropeltis acuminatas Ananas comosus Biochemical Composition Cellulose Crystallinity Index Thermal Behaviour
下载PDF
A new form of Miscanthus (Chinese silver grass, Miscanthus sinensis—Andersson) as a promising source of cellulosic biomass 被引量:1
7
作者 Vladimir K. Shumny Sergey G. Veprev +4 位作者 Nikolay N. Nechiporenko Tatiana N. Goryachkovskaya Nikolay M. Slynko Nikolay A. Kolchanov Sergey E. Peltek 《Advances in Bioscience and Biotechnology》 2010年第3期167-170,共4页
The Far East population of Miscanthus sinensis (Andersson) was introduced into the West Siberia conditions. There was distinguished a form with a modified structure of the rootage which forms long shoots with leader b... The Far East population of Miscanthus sinensis (Andersson) was introduced into the West Siberia conditions. There was distinguished a form with a modified structure of the rootage which forms long shoots with leader buds and rapidly colonizes soil, thus forming a continuous and flat (without tussocks) plantation of miscanthus. It is shown that using usual agrotechnologies, it is possible to obtain 10-15 tons of dry biomass of high quality cellulose (about 40%) per ha/year. 展开更多
关键词 Cellulose LIGNIN BIOMASS cellulosic BIOMASS MISCANTHUS SINENSIS VEGETATIVE Reproduction of Plants
下载PDF
Augmentation of Multifunctional Properties of Cellulosic Cotton Fabric Using Titanium Dioxide Nanoparticles 被引量:1
8
作者 Mohamed Gouda Abdullah Ibrahim Aljaafari 《Advances in Nanoparticles》 2012年第3期29-36,共8页
Titanium dioxide nanoparticle was synthesized by the reduction of titanium tetrachloride using borohydride, water as solvent, and polyvinyl-pyrrolidone as stabilizer. The average size of nano-TiO2 is estimated to be 5... Titanium dioxide nanoparticle was synthesized by the reduction of titanium tetrachloride using borohydride, water as solvent, and polyvinyl-pyrrolidone as stabilizer. The average size of nano-TiO2 is estimated to be 5 - 10 nm using a transmission electron microscope (TEM);this was confirmed by X-ray diffraction and UV-Vis spectroscopy. Nano-TiO2 was impregnated into cotton fabric to impart multifunctional properties and this was confirmed by scanning electron microscope and scanning electron microscope coupled with high energy distribution X-Ray (SEM-EDX). The TiO2 nanoparticles loaded cotton fabrics showed excellent antibacterial activity against two representative bacteria, Staphylococcus aureus (Gram positive) 96.6% and Klebsiella pneumonia (Gram negative) 95.2%. Also, TiO2 nanoparticles enhanced the self-cleaning and the protection of cotton fabrics against UV radiation in comparison with the untreated cotton fabrics. The TiO2 nanoparticles were durable in-situ cotton fabrics even after 20 laundering wash cycles. 展开更多
关键词 cellulosic Cotton FABRIC TiO2-Nanoparticles UV-Protection SELF-CLEANING ANTIBACTERIAL Properties
下载PDF
Cellulosic ethanol and its co-products from different substrates,pretreatments,microorganisms and bioprocesses:A review 被引量:1
9
作者 Fabiano Avelino Goncalves Eliana J.Sanjinez-Argandona Gustavo Graciano Fonseca 《Natural Science》 2013年第5期624-630,共7页
Cellulosic ethanol involves the following production steps: physical and/or chemical pretreatment, biological treatment, fermentation and distillation. First three steps are also the bottlenecks for the production of ... Cellulosic ethanol involves the following production steps: physical and/or chemical pretreatment, biological treatment, fermentation and distillation. First three steps are also the bottlenecks for the production of cellulosic ethanol and its co-products. Their production still pose some difficulties in terms of pretreatment, the high cost of enzymes for substrate hydrolysis, the formation of inhibitory compounds in the hydrolyzate, the lack of efficient and viable microorganisms for industrial fermentation of hexose and pentose among others. The solution or minimization of these difficulties may lead to numerous socio-environmental, political, and economic advantages for cellulosic ethanol production. This paper highlights the potential of different substrates, pretreatments, microorganisms and bioprocesses for cellulosic ethanol production. 展开更多
关键词 cellulosic Ethanol PRETREATMENTS FERMENTATION
下载PDF
Steam Pretreatment of Rice Hulls to Release Fermentable Saccharides:An Approach to Improve Recovery of(Hemi)Cellulosic Sugars Through Multivariate Design
10
作者 Sheila MONTIPO Christian Roslander +2 位作者 Marli Camassola Mats Galbe Ola Wallberg 《Rice science》 SCIE CSCD 2021年第5期501-510,I0037-I0039,共13页
The conversion of rice hulls into fermentable saccharides was explored through steam pretreatment employing 2.5% SO_(2).The in teraction between temperature and time was assessed by means of the response surface metho... The conversion of rice hulls into fermentable saccharides was explored through steam pretreatment employing 2.5% SO_(2).The in teraction between temperature and time was assessed by means of the response surface method to achieve optimum contents of C6-sugars in water-insoluble solids(WIS)and C5-sugars in the liquor.Pretreatment carried out at 218℃ for 2.3 min released liquor containing 55.4 g/L of sugars(29.1 g/L of xylose).In parallel,the WIS was subjected to enzymatic saccharification using different solid and enzyme loads via an experimental design:assays using 22.0% WIS and 20.0 filter paper units(FPU)/g led to 90.6 g/L of glucose,corresponding to a yield of 86.4% and an overall yield of 72.4%.The data reported are the highest ever found for such raw material,making it attractive to compete with conventi on al lig no cellulosic biomass. 展开更多
关键词 ligno cellulosic feedstock sulfur dioxide high solid loading HYDROLYSIS central composite rotatable design
下载PDF
Plasma electrolytic liquefaction of cellulosic biomass
11
作者 汤丁亮 张先徽 杨思泽 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第4期8-16,共9页
In this paper, the rapid liquefaction of a corncob was achieved by plasma electrolysis, providing a new method for cellulosic biomass liquefaction. The liquefaction rate of the corncob was 95% after 5 min with polyeth... In this paper, the rapid liquefaction of a corncob was achieved by plasma electrolysis, providing a new method for cellulosic biomass liquefaction. The liquefaction rate of the corncob was 95% after 5 min with polyethylene glycol and glycerol as the liquefying agent. The experiments not only showed that H~+ ions catalyzed the liquefaction of the corncob, but also that using accelerated H~+ ions, which were accelerated by an electric field, could effectively improve the liquefaction efficiency. There was an obvious discharge phenomenon, in which the generated radicals efficiently heated the solution and liquefied the biomass, in the process of plasma electrolytic liquefaction. Finally, the optimum parameters of the corncob liquefaction were obtained by experimentation, and the liquefaction products were analyzed. 展开更多
关键词 plasma electrolysis LIQUEFACTION cellulosic biomass POLYOLS
下载PDF
A NEW PROCESS OF COMBINATION OF INORGANIC PARTICLES WITH CELLULOSIC FABRICS
12
作者 钦维民 邵云 《Journal of China Textile University(English Edition)》 EI CAS 1996年第1期31-37,共7页
Instead of finishing the fabrics with inorganic particles by a binder, in this study the fine aluminium oxide powder were added during the polymerization system of a monomer with functional hydroxyl groups HPMA. The h... Instead of finishing the fabrics with inorganic particles by a binder, in this study the fine aluminium oxide powder were added during the polymerization system of a monomer with functional hydroxyl groups HPMA. The hot alkaline testing showed that the Al<sub>2</sub>O<sub>3</sub> particles had reacted with the polymer latex. The absorbability and wash durability of the fabric treated with such a latex with Al<sub>2</sub>O<sub>3</sub> were measured. 展开更多
关键词 INORGANIC PARTICLE cellulosic FABRIC 2-hydroxypropylmethacrylate
下载PDF
Cationic Modification of Cellulosic Fibres with Polyepichloro-hydrinamine Resins to Offer a Potential Dyeing Process Producing Cleaner Dyeing Effluent
13
作者 Yu Yinan(余逸男) +1 位作者 Chen Shuilin(陈水林) 《Journal of Donghua University(English Edition)》 EI CAS 2001年第4期63-66,共4页
Cationic modifying agent ( PECH- amine) with lower molecular weight and containing less nitrogen was prepared and characterized. The water-soluble cationic modification agent has high reactivity for cotton. Cotton mod... Cationic modifying agent ( PECH- amine) with lower molecular weight and containing less nitrogen was prepared and characterized. The water-soluble cationic modification agent has high reactivity for cotton. Cotton modified by this agent can be dyed under salt-free and neutral conditions with direct and reactive dyes. Dyes in the dyebath could be completely exhausted and a dyeing effluent without residual dyes and salt could be expected. 展开更多
关键词 cellulosic fibre polyepichlorohyrin-dimethylamine cationic modification DYEABILITY
下载PDF
Optimal Cellulosic Biomass Contracting with Multiple Feedstocks and Locations, and Multi-Modal Transport
14
作者 Subbu Kumarappan Satish Joshi 《Natural Resources》 2016年第1期69-82,共14页
Biorefineries are keen to design optimal biomass supply chains to minimize production, harvest, transport, and other costs. Such a design problem is challenging with the availability of multiple feedstocks (agricultur... Biorefineries are keen to design optimal biomass supply chains to minimize production, harvest, transport, and other costs. Such a design problem is challenging with the availability of multiple feedstocks (agricultural residues, perennials such as energy crops, short rotation woody crops), sourced from multiple harvest sheds, and transported across multiple modes (trucks, rails, and barges). This paper presents a multi-period optimization model to analyze the feasibility of collection from multiple harvest sheds. The results are demonstrated for a case study location in Alpena, MI served by truck and water transport. The model results suggest that: i) perennial biomass with higher yields would be preferred due to higher biomass production per unit area;ii) transport from farther locations are warranted only if the biomass production costs in the farther harvest sheds are cheaper by 20% - 30% compared to the adjacent harvest shed;and iii) the local situations of a biorefinery—characterized by the parametric inputs in the model—play a key role in determining the optimal feedstock composition across multiple harvest sheds. The results also support long term contracts associated with high yielding perennial feedstocks such as energy crops and short rotation woody crops. 展开更多
关键词 Biomass Supply Chain Harvest Shed cellulosic Biofuel BIOREFINERY
下载PDF
Mutual Competitive Absorption of Water and Essential Oils Molecules by Porose Ligno-Cellulosic Materials
15
作者 Bretislav Cesek Miloslav Milichovsky Jan Gojny 《Journal of Biomaterials and Nanobiotechnology》 2014年第2期66-75,共10页
Competitive absorption processes, i.e. condensation, of water and essential oils (EO) are predominantly controlled by extent of condensation of diffusing water and EO molecules with marginal influence of porose ligno-... Competitive absorption processes, i.e. condensation, of water and essential oils (EO) are predominantly controlled by extent of condensation of diffusing water and EO molecules with marginal influence of porose ligno-cellulosic matter and a sort of EO. With increase of absorption the diffusion is depressed and vice versa. Diffusion of water molecules through porose system is usually slower in comparison with other molecules. It was discovered that a presence of EO decreases paper web humidity with increasing influence in environment with high relative air humidity. Likely, fast diffusing EO molecules decrease the ability of water molecules condensed in all accessible pores particularly in the non-penetrable pores. 展开更多
关键词 cellulosic Base Materials Essential Oils Moistening Porous Materials Vapour Absorption
下载PDF
A Review on Surface?Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials 被引量:7
16
作者 Mandana Tavakolian Seid Mahdi Jafari Theo GMvan de Ven 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期90-112,共23页
As the most abundant biopolymer on the earth,cellulose has recently gained significant attention in the development of antibacterial biomaterials.Biodegradability,renewability,strong mechanical properties,tunable aspe... As the most abundant biopolymer on the earth,cellulose has recently gained significant attention in the development of antibacterial biomaterials.Biodegradability,renewability,strong mechanical properties,tunable aspect ratio,and low density offer tremendous possibilities for the use of cellulose in various fields.Owing to the high number of reactive groups(i.e.,hydroxyl groups)on the cellulose surface,it can be readily functionalized with various functional groups,such as aldehydes,carboxylic acids,and amines,leading to diverse properties.In addition,the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure,such as proteins,polymers,metal nanoparticles,and antibiotics.There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents.However,little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility.In this study,we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials.Despite the high effectiveness of surface-modified cellulosic antibacterial materials,more studies on their mechanism of action,the relationship between their properties and their effectivity,and more in vivo studies are required. 展开更多
关键词 Cellulose NANOCELLULOSE SURFACE modification Antibacterial activity BIOCOMPATIBILITY
下载PDF
Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials 被引量:3
17
作者 Viola Hospodarova Eva Singovszka Nadezda Stevulova 《American Journal of Analytical Chemistry》 2018年第6期303-310,共8页
Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable developme... Nowadays, the material recycling is a growing trend in development of building materials and therefore using of secondary raw materials for production new building materials is in accordance with sustainable development in civil engineering. Therefore, it is increasingly becoming crucial to accelerate the transition from application of non-renewable sources of raw materials to renewable raw materials. One fast renewable resource is natural plant fibers. The use of the cellulosic fibers as environmentally friendly material in building products contributes to the environmental protection and saves non-renewable resources of raw materials. Wood fibers and recycled cellulose fibers of waste paper appear as suited reinforcing elements for cement-based materials. In this paper, there is used application of Fourier transform infrared spectroscopy (FTIR) on cellulose fibers coming from different sources. FTIR spectra of cellulose fiber samples are investigated and compared with reference sample of cellulose. 展开更多
关键词 RENEWABLE RAW Materials CELLULOSE Fibers INFRARED SPECTROSCOPY
下载PDF
Facile Fabrication of Cellulosic Paper-based Composites with Temperature-controlled Hydrophobicity and Excellent Mechanical Strength 被引量:6
18
作者 Tongtong Yun Yilin Wang +3 位作者 Jie Lu Yi Cheng Yanna Lyu Haisong Wang 《Paper And Biomaterials》 2020年第2期20-27,共8页
In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber... In this paper,we presented a novel strategy to employ a plantderived carbohydrate polymer,i.e.,cellulose,to prepare a hydrophobic composite.Cellulose was used as a scaffold,and ethylene-propylene side by side(ES)fiber was thermally melted and then coated on the cellulose surface to achieve hydrophobicity.Experimental results revealed that the thermocoating ES fibers greatly increased the water contact angle of the cellulose scaffold from 25°to 153°while simultaneously enhanced the wet tensile strength of the composite approximately 6.7-fold(drying temperature of 170℃)compared with the pure cellulose paper.In particular,compared with other related research,the prepared cellulose-based composite possessed excellent hydrophobicity and superior mechanical strength,which introduces a new chemical engineering approach to prepare hydrophobic cellulose-based functional materials. 展开更多
关键词 CELLULOSE ES fiber PAPER-BASED COMPOSITES HYDROPHOBICITY mechanical strength
下载PDF
Effects of Lignocellulosic in Wood Used as Substrate on the Quality and Yield of Mushrooms 被引量:2
19
作者 Mercy Badu Sylvester K. Twumasi Nathaniel O. Boadi 《Food and Nutrition Sciences》 2011年第7期780-784,共5页
The objective of this study was to find out if the sawdust generated from some of the Ghanaian wood species can be used in the cultivation of pleurotus ostreatus (oyster mushroom) and their subsequent effect on the qu... The objective of this study was to find out if the sawdust generated from some of the Ghanaian wood species can be used in the cultivation of pleurotus ostreatus (oyster mushroom) and their subsequent effect on the quality and yield of the mushrooms produced. Sawdust from three Ghanaian wood species (Triplochiton scleraxylon, Ceiba pentandra and Terminalia superba) were collected and their cellulose, hemicelluloses, lignin and nitrogen contents determined using standard methods. Triplochiton scleraxylon gave 46.76%, 15.69%, 27.55%, 0.01% w/w, Ceiba pentandra gave 44.79%, 15.32%, 34.08%, 0.02% w/w and Terminalia superba gave 46.64%, 16.29%, 31.17%, 0.02% w/w of the cellulose, hemicelluloses, lignin and nitrogen content respectively. Compost was then made from each of the wood and used as substrate for the cultivation of pleurotus ostreatus. The highest yield of mushroom was obtained from T. scleraxylon 334g followed by T. superba 277 g and C. pentandra gave the lowest yield of 193 g fresh weight after 3 flushes. The proximate composition of the mushrooms produced gave crude protein ranging 16.33 - 18.20, fat 1.67 - 2.07, carbohydrate 40.86 - 50.53, fibre 4.14 - 6.73 and ash content of 4.40% - 5.80%. The report has shown that the yield and nutritional content of the oyster mushroom on sawdust depends on the chemical constituents such as the cellulose content, the hemicellulose content, the lignin content, the nitrogen content of the particular substrate used. Triplochiton scleraxylon gave the best yield and nutritional content, considering that these substrates are freely available and regarded as “waste”, it can be used to cultivate edible mushrooms to supplement nutritional requirement and source of income to make life better for many people. 展开更多
关键词 LIGNIN Cellulose HEMICELLULOSE PROXIMATE Composition PLEUROTUS Ostreatus
下载PDF
Chemical design and characterization of cellulosic derivatives containing high-nitrogen functional groups:Towards the next generation of energetic biopolymers
20
作者 Ahmed Fouzi Tarchoun Djalal Trache +3 位作者 Thomas M.Klapotke Amir Abdelaziz Mehdi Derradji Slimane Bekhouche 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期537-546,共10页
In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazo... In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field. 展开更多
关键词 CELLULOSE Surface functionalization TETRAZOLE Nitrate ester Nitrogen-rich polymer Energetic properties
下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部