In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose d...In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose deprivation/reperfusion model were established.Cells were divided into a control group,model group,hyperbaric air(HBA)group and HBO group.The cell viability was detected by the CCK8 assay.Hoechst 33342 and PI staining assays and mitochondrial membrane potential(MMP)assays were used to detect cell apoptosis.The ultrastructure of cells,including autophagosomes,lysosomes,and apoptosis,were examined using a transmission electron microscope.The expression of autophagy-related proteins was detected by cellular immunofluorescence and immunocytochemistry.Our results showed that HBO can significantly improve the vitality of damaged PC12 and H9C2 cells caused by oxygen–glucose deprivation/reperfusion.HBO can significantly inhibit apoptosis of PC12 and H9C2 cells caused by oxygenglucose deprivation/reperfusion.Importantly,we found that the protective mechanism of PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion may be related to the inhibition of the autophagy pathway.In this study,the results of cellular immunofluorescence and immunocytochemistry experiments showed that the 4E-BP1,p-AKt and mTOR levels of PC12 and H9C2 cells in the model group decreased,while the levels of LC3B,Atg5 and p53 increased.However,after HBO treatment,these autophagy-related indexes were reversed.In addition,observation of the cell ultrastructure with transmission electron microscopy found that in the model group,a significant increase in the number of autophagic vesicles was observed.In the HBO group,a decrease in autophagic vesicles was observed.The study demonstrated that hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy.展开更多
基金supported by the National Natural Science Foundation of China(81960246,81701089,81560044 and 30860113)the Guangxi Natural Science Foundation(2020GXNSFAA238003 and 2017GXNSFBA198010)+1 种基金the Guangxi Medical and Health Appropriate Technology Research and Development Project(S2020076,S201422-01 and S2019087)the Shanxi Health Research Project(2019165).
文摘In this study,we investigated the protective effect of hyperbaric oxygen(HBO)on PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion and its possible mechanism.PC12 and H9C2 cell oxygen-glucose deprivation/reperfusion model were established.Cells were divided into a control group,model group,hyperbaric air(HBA)group and HBO group.The cell viability was detected by the CCK8 assay.Hoechst 33342 and PI staining assays and mitochondrial membrane potential(MMP)assays were used to detect cell apoptosis.The ultrastructure of cells,including autophagosomes,lysosomes,and apoptosis,were examined using a transmission electron microscope.The expression of autophagy-related proteins was detected by cellular immunofluorescence and immunocytochemistry.Our results showed that HBO can significantly improve the vitality of damaged PC12 and H9C2 cells caused by oxygen–glucose deprivation/reperfusion.HBO can significantly inhibit apoptosis of PC12 and H9C2 cells caused by oxygenglucose deprivation/reperfusion.Importantly,we found that the protective mechanism of PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion may be related to the inhibition of the autophagy pathway.In this study,the results of cellular immunofluorescence and immunocytochemistry experiments showed that the 4E-BP1,p-AKt and mTOR levels of PC12 and H9C2 cells in the model group decreased,while the levels of LC3B,Atg5 and p53 increased.However,after HBO treatment,these autophagy-related indexes were reversed.In addition,observation of the cell ultrastructure with transmission electron microscopy found that in the model group,a significant increase in the number of autophagic vesicles was observed.In the HBO group,a decrease in autophagic vesicles was observed.The study demonstrated that hyperbaric oxygen protects against PC12 and H9C2 cell damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of cell apoptosis and autophagy.