The present work firstly aimed to obtain cellulose from sugarcane bagasse by using alkaline methods in pulping/delignifying and, at bleaching stages, using sodium chlorite, glacial acetic acid, and hydrogen peroxide, ...The present work firstly aimed to obtain cellulose from sugarcane bagasse by using alkaline methods in pulping/delignifying and, at bleaching stages, using sodium chlorite, glacial acetic acid, and hydrogen peroxide, associated to NaOH/KOH. The process was carried out at temperatures varying from 55°C to 110°C, under magnetic stirring in various steps lasting from 2 h to 12 h. The yields of the two cellulose extracted, SCB24-Na-I and SCB24-Na-II, were 37% and 41%, respectively, from samples of ca. 15 g of the bagasse. Secondly, it is to extract nanoparticles from the obtained celluloses via acid hydrolysis (with 77% H2SO4) to lately be tested as reinforcement in biodegradable packagings. Both celluloses and their respective nanoparticles were characterized by several techniques, among them ATR-FTIR, DSC-TGA, XRD, SEM, and TEM. Despite that the yields of cellulose nanoparticles have been low, the preliminary studies of their use in biodegradable films coated on biodegradable pots were promising.展开更多
基金the FINEP/FUNDEP for the awarded grantsthe FAPESP(process#2017/09469-2)for financial support
文摘The present work firstly aimed to obtain cellulose from sugarcane bagasse by using alkaline methods in pulping/delignifying and, at bleaching stages, using sodium chlorite, glacial acetic acid, and hydrogen peroxide, associated to NaOH/KOH. The process was carried out at temperatures varying from 55°C to 110°C, under magnetic stirring in various steps lasting from 2 h to 12 h. The yields of the two cellulose extracted, SCB24-Na-I and SCB24-Na-II, were 37% and 41%, respectively, from samples of ca. 15 g of the bagasse. Secondly, it is to extract nanoparticles from the obtained celluloses via acid hydrolysis (with 77% H2SO4) to lately be tested as reinforcement in biodegradable packagings. Both celluloses and their respective nanoparticles were characterized by several techniques, among them ATR-FTIR, DSC-TGA, XRD, SEM, and TEM. Despite that the yields of cellulose nanoparticles have been low, the preliminary studies of their use in biodegradable films coated on biodegradable pots were promising.