Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added durin...Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.展开更多
Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air p...Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air pollution induced during cement production as well as its high energy consumption,the use of supplementary materials to replace in part cement can be attractive.Natural zeolite(NZ),as an environmentally friendly material,is an alternative to reduce cement consumption.In the present study,a series of consolidated undrained(CU)triaxial tests on loose sandy soil(with relative density Dr=30%)grouted with cementitious materials(zeolite and cement)having cement replacement with zeolite content(Z)of 0%,10%,30%,50%,70%and 90%,and water to cementitious material ratios(W/CM)of 3,5 and 7 has been conducted.The results indicated that the peak deviatoric stress(qmax)of the grouted specimens increased with Z up to 50%(Z50)and then decreased.The strength of the grouted specimens reduced with increasing W/CM of the grouts from 3 to 7.In addition,by increasing the stress applied on the grouted specimens from yield stress(qy)to the maximum stress(qmax),due to the bond breakage,the effect of cohesion(c’)on the shear strength reduced gradually,while the effect of friction angle(φ’)increased.Furthermore,in some grouted specimens,high confining pressure caused breakage of the cemented bonds and reduced their expected strength.展开更多
Effective thermal conductivity of soils can be enhanced to achieve higher efficiencies in the operation of shallow geothermal systems.Soil cementation is a ground improvement technique that can increase the interparti...Effective thermal conductivity of soils can be enhanced to achieve higher efficiencies in the operation of shallow geothermal systems.Soil cementation is a ground improvement technique that can increase the interparticle contact area,leading to a high effective thermal conductivity.However,cementation may occur at different locations in the soil matrix,i.e.interparticle contacts,evenly or unevenly around particles,in the pore space or a combination of these.The topology of cementation at the particle scale and its influence on soil response have not been studied in detail to date.Additionally,soils are made of particles with different shapes,but the impact of particle shape on the cementation and the resulting change of effective thermal conductivity require further research.In this work,three kinds of sands with different particle shapes were selected and cementation was formed either evenly around the particles,or along the direction parallel or perpendicular to that of heat transfer.The effective thermal conductivity of each sample was computed using a thermal conductance network model.Results show that dry sand with more irregular particle shape and cemented along the heat transfer direction will lead to a more efficient thermal enhancement of the soil,i.e.a comparatively higher soil effective thermal conductivity.展开更多
One of the conventional ways to improve the mechanical behavior of soils is to mix them with cementing agents such as cement, lime and fly ash. Recently, introduction to alternative materials or sub-products that can ...One of the conventional ways to improve the mechanical behavior of soils is to mix them with cementing agents such as cement, lime and fly ash. Recently, introduction to alternative materials or sub-products that can be adopted to improve the soil strength is of paramount importance. Therefore, the present study aims to investigate the effects of porosity(h), dry unit weight(gd) of molding, cement content(C)and porosity/volumetric cement content ratio(h/Civ) or void/cement ratio on the unconfined compressive strength(quor UCS) of silty soileroof tile waste(RT) mixtures. Soil samples are molded into four different dry unit weights(i.e. 13 kN/m^3, 13.67 kN/m^3, 14.33 kN/m^3 and 15 kN/m^3) using 3%, 6% and 9%cement and 5%, 15% and 30% RT. The results show that with the addition of cement, the strength of the RT esoil mixtures increases in a linear manner. On the other hand, the addition of RT decreases quof the samples at a constant percentage of cement, and the decrease in porosity can increase qu. A dosage equation is derived from the experimental data using the porosity/volumetric cement content ratio(h/C_(iv)) where the control variables are the moisture content, crushed tile content, cement content and porosity.展开更多
文摘Improvement of properties of weak soils in terms of strength,durability and cost is the key from engineering point of view.The weak soils could be stabilized using mechanical and/or chemical methods.Agents added during chemical stabilization could improve the engineering properties of treated soils.Stabilizers utilized have to satisfy noticeable performance,durability,low price,and can be easily implemented.Since cement kiln dust(CKD) is industrial by-product,it would be a noble task if this waste material could be utilized for stabilization of sabkha soil.This study investigates the feasibility of utilizing CKD for improving the properties of sabkha soil.Soil samples are prepared with 2% cement and 10%,20% or 30% CKD and are tested to determine their unconfined compressive strength(UCS),soaked California bearing ratio(CBR) and durability.Mechanism of stabilization is studied utilizing advanced techniques,such as the scanning electron microscope(SEM),energy dispersive X-ray analysis(EDX),backscattered electron image(BEI) and X-ray diffraction analysis(XRD).It is noted that the sabkha soil mixed with 2% cement and 30% CKD could be used as a sub-base material in rigid pavements.The incorporation of CKD leads to technical and economic benefits.
文摘Permeation grouting with cement agent is one of the most widely used methods in various geotechnical projects,such as increasing bearing capacity,controlling deformation,and reducing permeability of soils.Due to air pollution induced during cement production as well as its high energy consumption,the use of supplementary materials to replace in part cement can be attractive.Natural zeolite(NZ),as an environmentally friendly material,is an alternative to reduce cement consumption.In the present study,a series of consolidated undrained(CU)triaxial tests on loose sandy soil(with relative density Dr=30%)grouted with cementitious materials(zeolite and cement)having cement replacement with zeolite content(Z)of 0%,10%,30%,50%,70%and 90%,and water to cementitious material ratios(W/CM)of 3,5 and 7 has been conducted.The results indicated that the peak deviatoric stress(qmax)of the grouted specimens increased with Z up to 50%(Z50)and then decreased.The strength of the grouted specimens reduced with increasing W/CM of the grouts from 3 to 7.In addition,by increasing the stress applied on the grouted specimens from yield stress(qy)to the maximum stress(qmax),due to the bond breakage,the effect of cohesion(c’)on the shear strength reduced gradually,while the effect of friction angle(φ’)increased.Furthermore,in some grouted specimens,high confining pressure caused breakage of the cemented bonds and reduced their expected strength.
文摘Effective thermal conductivity of soils can be enhanced to achieve higher efficiencies in the operation of shallow geothermal systems.Soil cementation is a ground improvement technique that can increase the interparticle contact area,leading to a high effective thermal conductivity.However,cementation may occur at different locations in the soil matrix,i.e.interparticle contacts,evenly or unevenly around particles,in the pore space or a combination of these.The topology of cementation at the particle scale and its influence on soil response have not been studied in detail to date.Additionally,soils are made of particles with different shapes,but the impact of particle shape on the cementation and the resulting change of effective thermal conductivity require further research.In this work,three kinds of sands with different particle shapes were selected and cementation was formed either evenly around the particles,or along the direction parallel or perpendicular to that of heat transfer.The effective thermal conductivity of each sample was computed using a thermal conductance network model.Results show that dry sand with more irregular particle shape and cemented along the heat transfer direction will lead to a more efficient thermal enhancement of the soil,i.e.a comparatively higher soil effective thermal conductivity.
文摘One of the conventional ways to improve the mechanical behavior of soils is to mix them with cementing agents such as cement, lime and fly ash. Recently, introduction to alternative materials or sub-products that can be adopted to improve the soil strength is of paramount importance. Therefore, the present study aims to investigate the effects of porosity(h), dry unit weight(gd) of molding, cement content(C)and porosity/volumetric cement content ratio(h/Civ) or void/cement ratio on the unconfined compressive strength(quor UCS) of silty soileroof tile waste(RT) mixtures. Soil samples are molded into four different dry unit weights(i.e. 13 kN/m^3, 13.67 kN/m^3, 14.33 kN/m^3 and 15 kN/m^3) using 3%, 6% and 9%cement and 5%, 15% and 30% RT. The results show that with the addition of cement, the strength of the RT esoil mixtures increases in a linear manner. On the other hand, the addition of RT decreases quof the samples at a constant percentage of cement, and the decrease in porosity can increase qu. A dosage equation is derived from the experimental data using the porosity/volumetric cement content ratio(h/C_(iv)) where the control variables are the moisture content, crushed tile content, cement content and porosity.