The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative...The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative to the value obtained by using as-received silica fume. The scanning electron microscopy (SEM) images iindicate that there is a morphological difference in the cement paste with treated and as-received silica fume, The, X-ray diffraction (XRD), infrared (IR) spectrum analyses and mercury intrusion porosimetry ( MIP ) have provided evidence to understand the reaction mechanism between treated silica .fume and the hydrate product of cement. This has led to the establishment of an initial microscopic model describing the damping behavior of cement matrix.展开更多
A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, a...A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.展开更多
The effect of the deferent rubber content substituted for fine aggregate on the mortar performance was studied.The effects of the rubber coated with the coating materials on the mortar compressive strength,bending str...The effect of the deferent rubber content substituted for fine aggregate on the mortar performance was studied.The effects of the rubber coated with the coating materials on the mortar compressive strength,bending strength and impact work were discussed.The optimum rubber powder content and the suitable coating material were found.Through the electrical probe test-BEI,SEI and calcium ion distribution,and the slight crack and the interface between the rubber and cement matrix are analyzed.The results show that the rubber powder coated with the surface treatment materials A,B and C has the capability of absorbing a large amount of energy under the compressive and flexural load and the slight cracks of R-C were controlled and restrained.展开更多
AIM:To analyze bone inductive capacity of the compound material of decalcified bone matrix combined with rhBMP 2 and impregnated with bone cement.METHODS:To assess the experimental study, histological and Masson’s me...AIM:To analyze bone inductive capacity of the compound material of decalcified bone matrix combined with rhBMP 2 and impregnated with bone cement.METHODS:To assess the experimental study, histological and Masson’s methods were used.RESULTS:The effects of compound material on the induction of bone formation were investigated in NIH mouse models.It was observed that in the with rhBMP 2 group, mesenchymal cells gathered in the implanted material at the 7th day postoperation,chondrogenesis were found at 14 to 21 days after implantation,new bone formation were observed at about 21 to 28 days after surgery and the DBM particles were absorbed by the new generated tissues gradually.CONCLUSIONS:The compound material of DBM combined with rhBMP 2 and impregnated with bone cement could induce the proliferation and migration of mesenchymal tissues that could be differentiated into cartilage and formed new bone finally.The new bone could absorb DBM particles gradually.The compound material had fair capacity of bone induction.展开更多
Conductive cementitious composites are innovated materials that have improved electrical conductivity compared to general types of cement,and are expected to be used in a variety of future infrastructures with unique ...Conductive cementitious composites are innovated materials that have improved electrical conductivity compared to general types of cement,and are expected to be used in a variety of future infrastructures with unique functionalities such as self-heating,electromagnetic shielding,and piezoelectricity.In the present study,machine learning methods that have been recently applied in various fields were proposed for the prediction of piezoelectric characteristics of carbon nanotubes(CNTs)-incorporated cement composites.Data on the resistivity change of CNTs/cement composites according to various water/binder ratios,loading types,and CNT content were considered as training values.These data were applied to numerous machine learning techniques including linear regression,decision tree,support vector machine,deep belief network,Gaussian process regression,genetic algorithm,bagging ensemble,random forest ensemble,boosting ensemble,long short-term memory,and gated recurrent units to estimate the time-independent and-dependent electrical properties of conductive cementitious composites.By comparing and analyzing the computed results of the proposed methods,an optimal algorithm suitable for application to CNTs-embedded cementitious composites was derived.展开更多
The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydratio...The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydration law on the surface of high water-absorbing matrix. Hydration products were qualitatively and semi-quantitatively analyzed using XRD, TG-DSC-DTG, FTIR and SEM. The experimental results show that there is no enough water for 2 mm thick cement pastes to hydrate, because of rapid water absorption of matrix. Trace amounts of Ca (OH)2 was detected after three days hydration. With the prolongation of hydration time, the category and concentration of hydration products do not change. Compared with 2 mm thick cement pastes, 6 mm thick cement pastes and 10 mm thick cement pastes have lower dehydration rate and water loss. The humidity field of the cement paste show different changes within the same time. 6 mm thick cement paste and 10 mm thick cement pastes have longer time and more water to hydrate. Ca(OH)2 and ettringite were detected after 6 hours hydration and the concentrations of hydration products increased from 24 hours to 7 days.展开更多
Pulverised stem fibres of the natural sponge plant, SP, (Acanthus montanus) and stranded coconut fibre, CF, (Cocos nucifera) from the coir tree were used as reinforcements for thin cement sheets in this research work....Pulverised stem fibres of the natural sponge plant, SP, (Acanthus montanus) and stranded coconut fibre, CF, (Cocos nucifera) from the coir tree were used as reinforcements for thin cement sheets in this research work. The mixture of cement and pulverised waste paper, which formed the matrix, was maintained constant while the fibre mass concentration of both fibres were varied. The slurry formed by adding water to the mixture of the matrix materials and the reinforcement fibres, was poured into rectangular mould and consequently pressed to eject excess water. De-moulded samples were allowed to cure in the laboratory for twenty-eight days before flexural and compressive tests were carried out. The analysis of the experimental results established that sample coded as S4, with 30% CF and 70% SP, showed the most promising result. This implied that particulate reinforcement in cement matrix composite contributed to higher and improved flexural load bearing capacity and ductility when utilised in a higher proportion than long fibres.展开更多
文摘The surface treatment of silca fume with silane coupling agent prior w incorporation in a cement mortar resulted in composites exhibiting increuses in loss tangent by 5%-200% and storage modulus by 10%-20% , relative to the value obtained by using as-received silica fume. The scanning electron microscopy (SEM) images iindicate that there is a morphological difference in the cement paste with treated and as-received silica fume, The, X-ray diffraction (XRD), infrared (IR) spectrum analyses and mercury intrusion porosimetry ( MIP ) have provided evidence to understand the reaction mechanism between treated silica .fume and the hydrate product of cement. This has led to the establishment of an initial microscopic model describing the damping behavior of cement matrix.
文摘A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.
文摘The effect of the deferent rubber content substituted for fine aggregate on the mortar performance was studied.The effects of the rubber coated with the coating materials on the mortar compressive strength,bending strength and impact work were discussed.The optimum rubber powder content and the suitable coating material were found.Through the electrical probe test-BEI,SEI and calcium ion distribution,and the slight crack and the interface between the rubber and cement matrix are analyzed.The results show that the rubber powder coated with the surface treatment materials A,B and C has the capability of absorbing a large amount of energy under the compressive and flexural load and the slight cracks of R-C were controlled and restrained.
文摘AIM:To analyze bone inductive capacity of the compound material of decalcified bone matrix combined with rhBMP 2 and impregnated with bone cement.METHODS:To assess the experimental study, histological and Masson’s methods were used.RESULTS:The effects of compound material on the induction of bone formation were investigated in NIH mouse models.It was observed that in the with rhBMP 2 group, mesenchymal cells gathered in the implanted material at the 7th day postoperation,chondrogenesis were found at 14 to 21 days after implantation,new bone formation were observed at about 21 to 28 days after surgery and the DBM particles were absorbed by the new generated tissues gradually.CONCLUSIONS:The compound material of DBM combined with rhBMP 2 and impregnated with bone cement could induce the proliferation and migration of mesenchymal tissues that could be differentiated into cartilage and formed new bone finally.The new bone could absorb DBM particles gradually.The compound material had fair capacity of bone induction.
文摘Conductive cementitious composites are innovated materials that have improved electrical conductivity compared to general types of cement,and are expected to be used in a variety of future infrastructures with unique functionalities such as self-heating,electromagnetic shielding,and piezoelectricity.In the present study,machine learning methods that have been recently applied in various fields were proposed for the prediction of piezoelectric characteristics of carbon nanotubes(CNTs)-incorporated cement composites.Data on the resistivity change of CNTs/cement composites according to various water/binder ratios,loading types,and CNT content were considered as training values.These data were applied to numerous machine learning techniques including linear regression,decision tree,support vector machine,deep belief network,Gaussian process regression,genetic algorithm,bagging ensemble,random forest ensemble,boosting ensemble,long short-term memory,and gated recurrent units to estimate the time-independent and-dependent electrical properties of conductive cementitious composites.By comparing and analyzing the computed results of the proposed methods,an optimal algorithm suitable for application to CNTs-embedded cementitious composites was derived.
基金Funded by the Youth Fund of National Natural Science Foundation of China (50902107)
文摘The early stage hydration mechanism of cellulose ether modified thin layer cement pastes was studied, using brick as the matrix. Samples of 6 h, 24 h, and 3 d and 7 d hydration time were analyzed to study the hydration law on the surface of high water-absorbing matrix. Hydration products were qualitatively and semi-quantitatively analyzed using XRD, TG-DSC-DTG, FTIR and SEM. The experimental results show that there is no enough water for 2 mm thick cement pastes to hydrate, because of rapid water absorption of matrix. Trace amounts of Ca (OH)2 was detected after three days hydration. With the prolongation of hydration time, the category and concentration of hydration products do not change. Compared with 2 mm thick cement pastes, 6 mm thick cement pastes and 10 mm thick cement pastes have lower dehydration rate and water loss. The humidity field of the cement paste show different changes within the same time. 6 mm thick cement paste and 10 mm thick cement pastes have longer time and more water to hydrate. Ca(OH)2 and ettringite were detected after 6 hours hydration and the concentrations of hydration products increased from 24 hours to 7 days.
文摘Pulverised stem fibres of the natural sponge plant, SP, (Acanthus montanus) and stranded coconut fibre, CF, (Cocos nucifera) from the coir tree were used as reinforcements for thin cement sheets in this research work. The mixture of cement and pulverised waste paper, which formed the matrix, was maintained constant while the fibre mass concentration of both fibres were varied. The slurry formed by adding water to the mixture of the matrix materials and the reinforcement fibres, was poured into rectangular mould and consequently pressed to eject excess water. De-moulded samples were allowed to cure in the laboratory for twenty-eight days before flexural and compressive tests were carried out. The analysis of the experimental results established that sample coded as S4, with 30% CF and 70% SP, showed the most promising result. This implied that particulate reinforcement in cement matrix composite contributed to higher and improved flexural load bearing capacity and ductility when utilised in a higher proportion than long fibres.