Cellulose ethers are widely used to mortar formulations,and it is significant to understand the interaction between cellulose ethers and cement pastes.FT-IR spectra,thermal analysis and SEM are used to investigate hyd...Cellulose ethers are widely used to mortar formulations,and it is significant to understand the interaction between cellulose ethers and cement pastes.FT-IR spectra,thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article.The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste,but the major hydration products,such as CH(calcium hydroxide),ettringite and C-S-H,appeared later in the modified cement pastes than in the unmodified cement paste.The cellulose ethers decrease the outer products and increase inner products of C-S-H gels.Compared to unmodified cement pastes,no new products are found in the modified cement pastes in the present experiment.The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.展开更多
In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable...In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.展开更多
The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resona...The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.展开更多
China Resources Cement in Hepu County of Beihai City is building two new type dry method cement production lines with two sets of 9 MW pure low temperatures residual heat power generating systems matched. Phase I of t...China Resources Cement in Hepu County of Beihai City is building two new type dry method cement production lines with two sets of 9 MW pure low temperatures residual heat power generating systems matched. Phase I of the project will be invested CNY I billion, and had been invested CNY 0.13 billion in 2012. China Resources Cement is shooting at putting the lines into production in May 2014.展开更多
The reaction models and the quantitative calculation on the volume fraction of hydration products for binary ground granulated blast-furnace slag (GGBFS) cement system are presented, in which two important factors a...The reaction models and the quantitative calculation on the volume fraction of hydration products for binary ground granulated blast-furnace slag (GGBFS) cement system are presented, in which two important factors are taken into account, i e, the reactivity of GGBFS influenced by its chemical compositions and the partial replacement of aluminum phase in calcium silicate hydrate (C-S-H) gel. A simplified treatment is further suggested towards the quantification. In particular, when the replacement level of GGBFS is lower than 70%, the ratio of calcium over silica (C/S) is set at 1.5 or at 1.2 otherwise. The validity of the proposed model is addressed in terms of the contents of calcium Portlandite and non-evaporable water.展开更多
Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under differen...Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under different curing regimes(standard curing, 90 ℃ steam curing, 200 ℃ and 250 ℃ autoclave curing) were investigated by X-ray diffraction and field emission scanning electron microscope equipped with EDAX system. Results showed that the main hydration products in three kinds of hardened pastes under standard curing condition are all C-S-H gels, CH, and AFt. Under 90 ℃ steam curing condition, the main hydration products of cement-silica fume and cement-silica fume-quartz powder are C-S-H gels, whereas those of cement-quartz powder are C-S-H and CH. Under 200 or 250 ℃ autoclave curing condition, no obvious crystallized CH phase is found in hardened pastes of three kinds of blended cement, and C-S-H gels are transformed into one or more crystalline phases such as tobermorite, jennite, and xonotlite. The chemical composition and morphology of these crystalline phases depend on the composition of mixture and autoclave temperature.展开更多
基金Funded by Youth Fund of National Natural Science Foundation of China(No.50902107)the 973 Program(No.2009CB623201)from Ministry of Science and Technology of Chinathe Fundamental Research Funds for the Central Universities
文摘Cellulose ethers are widely used to mortar formulations,and it is significant to understand the interaction between cellulose ethers and cement pastes.FT-IR spectra,thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article.The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste,but the major hydration products,such as CH(calcium hydroxide),ettringite and C-S-H,appeared later in the modified cement pastes than in the unmodified cement paste.The cellulose ethers decrease the outer products and increase inner products of C-S-H gels.Compared to unmodified cement pastes,no new products are found in the modified cement pastes in the present experiment.The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.
文摘In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2015CB655101)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQZDJJ201504)+2 种基金State Key Laboratory of High Performance Civil Engineering Materials(No.2015CEM006)Natural Science Foundation of Hebei Province(No.E2016209283)Science and Technology Program of Hebei Province(No.16273706D)
文摘The influence of polyepoxysuccinic acid(PESA)on the solid phase products in hydrated Portland cement pastes was investigated by isothermal calorimetry,X-ray diffraction(XRD),^29Si and ^27Al nuclear magnetic resonance(NMR).The results indicated that PESA bonds Ca^2+ions in pore solution to prevent portlandite formation,and also combines with Ca^2+ions on the surface of silicate minerals to prolong the control time of phase boundary reaction process,leading to the retardation of silicate mineral hydration.Meanwhile,the interlayer Ca^2+ions in Jennite-like structure bridging PESA and C-S-H gels prevent silicate tetrahedron and aluminum tetrahedron from occupying the sites of bridging silicate tetrahedron,which causes the main existence of dimer in C-S-H structure,deceases the degree of Al^3+substituting for Si^4+and promotes the transformation from 4-coordination aluminum to 6-coordination aluminum.Furthermore,the-Ca^+chelating group from reacting PESA with Ca^2+ions combines easily with SO4^2-ions,resulting in transformation from ettringite,AFm to TAH(Third aluminum hydrate).However,with the higher addition of PESA,it will bridge the excess PESA by Ca^2+ions to form a new chelate with ladder-shaped double chains structure,which not only reduces the amount of PESA bonding Ca^2+ions,but also decreases its solidifying capability for SO4^2-ions,leading to the transformation from TAH to AFm or ettringite.Meanwhile,at later hydration,the inhibition effect of PESA on cement hydration is weakened,and the transformation degree from TAH to AFm is higher than that to AFt with the addition of PESA.
文摘China Resources Cement in Hepu County of Beihai City is building two new type dry method cement production lines with two sets of 9 MW pure low temperatures residual heat power generating systems matched. Phase I of the project will be invested CNY I billion, and had been invested CNY 0.13 billion in 2012. China Resources Cement is shooting at putting the lines into production in May 2014.
基金Funded by the National Natural Science Foundation of China(No.51078081)
文摘The reaction models and the quantitative calculation on the volume fraction of hydration products for binary ground granulated blast-furnace slag (GGBFS) cement system are presented, in which two important factors are taken into account, i e, the reactivity of GGBFS influenced by its chemical compositions and the partial replacement of aluminum phase in calcium silicate hydrate (C-S-H) gel. A simplified treatment is further suggested towards the quantification. In particular, when the replacement level of GGBFS is lower than 70%, the ratio of calcium over silica (C/S) is set at 1.5 or at 1.2 otherwise. The validity of the proposed model is addressed in terms of the contents of calcium Portlandite and non-evaporable water.
基金Funded by the National Natural Science Foundation of China(Nos.51272193,51372183,51072150)Program for New Century Excellent Talents in University(No.NCET-10-0660)the National Key Research Projects(No.2016YFB0303501)
文摘Composition, morphology, and structure of hydration products in hardened pastes of three kinds of blended cement(cement-silica fume, cement-quartz powder and cement-silica fume-quartz powder) hydrated under different curing regimes(standard curing, 90 ℃ steam curing, 200 ℃ and 250 ℃ autoclave curing) were investigated by X-ray diffraction and field emission scanning electron microscope equipped with EDAX system. Results showed that the main hydration products in three kinds of hardened pastes under standard curing condition are all C-S-H gels, CH, and AFt. Under 90 ℃ steam curing condition, the main hydration products of cement-silica fume and cement-silica fume-quartz powder are C-S-H gels, whereas those of cement-quartz powder are C-S-H and CH. Under 200 or 250 ℃ autoclave curing condition, no obvious crystallized CH phase is found in hardened pastes of three kinds of blended cement, and C-S-H gels are transformed into one or more crystalline phases such as tobermorite, jennite, and xonotlite. The chemical composition and morphology of these crystalline phases depend on the composition of mixture and autoclave temperature.