期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Failure mechanism and influencing factors of cement sheath integrity under alternating pressure 被引量:1
1
作者 Kuan-Hai Deng Nian-Tao Zhou +4 位作者 Yuan-Hua Lin Yan-Xian Wu Jie Chen Chang Shu Peng-Fei Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2413-2427,共15页
The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-form... The failure of cement sheath integrity can be easily caused by alternating pressure during large-scale multistage hydraulic fracturing in shale-gas well.An elastic-plastic mechanical model of casing-cement sheath-formation(CSF)system under alternating pressure is established based on the Mohr-Coulomb criterion and thick-walled cylinder theory,and it has been solved by MATLAB programming combining global optimization algorithm with Global Search.The failure mechanism of cement sheath integrity is investigated,by which it can be seen that the formation of interface debonding is mainly related to the plastic strain accumulation,and there is a risk of interface debonding under alternating pressure,once the cement sheath enters plasticity whether in shallow or deep well sections.The matching relationship between the mechanical parameters(elastic modulus and Poisson's ratio)of cement sheath and its integrity failure under alternating pressure in whole well sections is studied,by which it has been found there is a“critical range”in the Poisson's ratio of cement sheath.When the Poisson's ratio is below the“critical range”,there is a positive correlation between the yield internal pressure of cement sheath(SYP)and its elastic modulus.However,when the Poisson's ratio is above the“critical range”,there is a negative correlation.The elastic modulus of cement sheath is closely related to its Poisson's ratio,and restricts each other.Scientific and reasonable matching between mechanical parameters of cement sheath and CSF system under different working conditions can not only reduce the cost,but also protect the cement sheath integrity. 展开更多
关键词 Casing-cement sheath-formation system Mechanical model Matching relationship cement sheath integrity Critical range Mechanical parameters
下载PDF
THM coupled analysis of cement sheath integrity considering well
2
作者 Xiao-Rong Li Chen-Wang Gu +1 位作者 Ze-Chen Ding Yong-Cun Feng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期447-459,共13页
he cement sheath is the heart of any oil or gas well for providing zonal isolation and well integrity during the life of a well.Loads induced by well construction operations and borehole pressure and temperature chang... he cement sheath is the heart of any oil or gas well for providing zonal isolation and well integrity during the life of a well.Loads induced by well construction operations and borehole pressure and temperature changes may lead to the ultimate failure of cement sheath.This paper quantifies the potential of cement failure under mechanically and thermally induced stress during the life-of-well using a coupled thermalehydrologicalemechanical(THM)modeling approach.A staged finite-element procedure is presented considering sequential stress and displacement development during each stage of the well life,including drilling,casing,cementing,completion,production,and injection.The staged model quantifies the stress states and state variables,e.g.,plastic strain,damage,and debonding at cement/rock or cement/casing interface,in each well stage from simultaneous action of in-situ stress,pore pressure,temperature,casing pressure,and cement hardening/shrinkage.Thus,it eliminates the need to guess the initial stress and strain state before modeling a specific stage.Moreover,coupled THM capabilities of the model ensure the full consideration of the interaction between these influential factors. 展开更多
关键词 cement sheath integrity Thermal-hydrological-mechanical Whole life cycle cement sheath shrinkage Initial stresses
下载PDF
Integrity and Failure Analysis of Cement Sheath Subjected to Coalbed Methane Fracturing
3
作者 Lingyun Zhao Heng Yang +3 位作者 Yuanlong Wei Yuhuan Bu Shaorui Jing Peiming Zhou 《Fluid Dynamics & Materials Processing》 EI 2023年第2期329-344,共16页
Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic mo... Perforation and fracturing are typically associated with the development of coalbed methane wells.As the cement sheath is prone to failure during this process,in this work,the effects of the casing pressure,elastic modulus of the cement,elastic modulus of the formation,and casing eccentricity on the resulting stresses are analyzed in the frame of a finite element method.Subsequently,sensitivity response curves of the cement sheath stress are plotted by normalizing all factors.The results show that the maximum circumferential stress and Mises stress of the cement sheath increase with the casing internal pressure,elastic modulus of the cement and casing eccentricity.As the elastic modulus of the formation increases,the maximum circumferential stress of the cement sheath decreases,and its maximum Mises stress increases slightly.The cement sheath undergoes tensile failure during coalbed methane fracturing.The stress sensitivity of the cement sheath to the influential parameters is in the following order:casing internal pressure>elastic modulus of cement sheath>casing eccentricity>elastic modulus of formation. 展开更多
关键词 Coalbed methane fracturing finite element method cement sheath integrity sensitivity analysis failure analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部