期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Effect of Natural Zeolite on Pore Structure of Cemented Uranium Tailings Backfill
1
作者 Fulin Wang Xinyang Geng +1 位作者 Zhengping Yuan Shijiao Yang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1469-1484,共16页
The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials m... The use of some environmental functional minerals as backfill-modified materials may improve the leaching resistance of cemented uranium tailings backfill created from alkali-activated slag(CUTB),but these materials may participate in the hydration reaction of the cementitious materials,which could have a certain impact on the pore structure of the CUTB,thus affecting its mechanical properties and leaching resistance.In this paper,natural zeolite is selected as the backfill-modified material,and it is added to alkali-activated slag paste(AASP)and CUTB in cementitious material proportions of 4%,8%,12%,and 16%to prepare AASP mixtures and CUTB mixtures containing environmental functional minerals.After the addition of natural zeolite,the porosity of the CUTB generally increases,but when the content is 4%,the porosity decreases to 22.30%.The uniaxial compressive strength(UCS)of the CUTB generally decreases,but the decrease is the smallest when the content is 4%,and the UCS is 12.37 MPa.The addition of natural zeolite mainly reduces the number of fine pores in the CUTB,but the pores with relaxation times T_(2)of greater than 10 ms account for about 10%of the total pores,and there are a certain number of large pores in the CUTB.The main product of alkali-activated slag is calcium(alumino)silicate hydrate(C-(A)-S-H gel).When natural zeolite is added,the hydration products develop towards denser products with a high degree of polymerization and the formation of low polymerization products is reduced.This affects the internal fracture pores of the hydration products and the interface pores of the CUTB,has an irregular effect on the pore characteristics of the CUTB,and influences the UCS. 展开更多
关键词 Pore structure cemented backfill natural zeolite uranium tailings LF-NMR
下载PDF
Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry 被引量:6
2
作者 吴迪 蔡嗣经 黄刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第9期2954-2963,共10页
The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progr... The fluidity of fresh cemented tailings backfill(CTB) slurry depends on its rheological properties. Hence, it is crucial to understand the rheology of fresh CTB slurry, which is related to the cement hydration progress and temperature evolution within CTB mixtures. For this reason, a numerical model was developed to predict the evolution of the rheological properties of fresh CTB slurry under the coupled effect of cement hydration and temperature. Experiments were conducted to investigate the rheological behaviours of the fresh CTB slurry. By comparing the simulated results with the experimental ones, the availability of this developed model was validated. Thereafter, the model was used to demonstrate the coupled effect of cement hydration and temperature on the evolution of fresh CTB slurry's rheological properties, under various conditions(initial CTB temperature, cement to tailings ratio, and water to cement ratio). The obtained results are helpful to better understanding the rheology of CTB slurry. 展开更多
关键词 cemented tailings backfillctb HYDRATION temperature rheology coupled model
下载PDF
Physical model investigation on effects of drainage condition and cement addition on consolidation behavior of tailings slurry within backfilled stopes 被引量:2
3
作者 Qinghai Ma Guangsheng Liu +1 位作者 Xiaocong Yang Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1490-1501,共12页
Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requi... Estimation of stressses within the tailings slurry during self-weight consolidation is a critical issue for cost-effective barricade design and efficient backfill planning in underground mine stopes.This process requires a good understanding of self-weight consolidation behaviors of the tailings slurry within practical stopes,where many factors can have significant effects on the consolidation,including drainage condition and cement addition.In this paper,the prepared tailings slurry with different cement contents(0,4.76wt%,and 6.25wt%)was poured into1.2 m-high columns,which allowed three drainage scenarios(undrained,partial lateral drainage near the bottom part,and full lateral drainage boundaries)to investigate the effects of drainage condition and cement addition on the consolidation behavior of the tailings slurry.The consolidation behavior was analyzed in terms of pore water pressure(PWP),settlement,volume of drainage water,and residual water content.The results indicate that increasing the length of the drainage boundary or cement content aids in PWP dissipation.In addition,constructing an efficient drainage boundary was more favorable to PWP dissipation than increasing cement addition.The final stable PWP on the column floor was not sensitive to cement addition.The final settlement of uncemented tailings slurry was independent of drainage conditions,and that of cemented tailings slurry decreased with the increase in cement addition.Notably,more pore water can drain out from the cemented tailings slurry than the uncemented tailings slurry during consolidation. 展开更多
关键词 tailings backfill CONSOLIDATION slurry drainage cement content physical model test
下载PDF
Molecular mechanism of fly ash affecting the performance of cemented backfill material 被引量:1
4
作者 Shuo Yang Jiangyu Wu +5 位作者 Hongwen Jing Xinguo Zhang Weiqiang Chen Yiming Wang Qian Yin Dan Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1560-1572,共13页
The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement... The great challenge of cemented tailings backfill(CTB)is difficult simultaneously maintaining its excellent mechanical properties and low cost.Fly ash(FA)can potentially address this problem and further replace cement in favor of low carbon development.However,its mechanism on CTB with low cement dosage and low Ca system remains unclear.Consequently,this study conducted uniaxial compression,Xray diffraction(XRD),and scanning electron microscopy(SEM)-energy dispersive spectrometer(EDS)tests to investigate the effect of FA dosage on the mechanical property and microstructure of CTB.A molecular model of FA-CSH was constructed to reproduce the molecular structure evolution of CTB with FA based on the test results.The influences of FA dosage and calcium/silica molar ratio(Ca/Si ratio)on the matrix strength and failure model were analyzed to reveal the mechanism of FA on calcium silicate hydrated(C-S-H).The results show that the strength of CTB increases initially and then decreases with FA dosage,and the FA supplement leads to a decrease in Ca(OH)_(2) diffraction intensity and Ca/Si ratio around the FA particles.XRD and SEM-EDS findings show that the Ca/Si ratio of C-S-H decreases with the progression of hydration.The FA-CSH model indicates that FA can reinforce the silica chain of C-S-H to increase the matrix strength.However,this enhancement is weakened by supplementing excessive FA dosage.In addition,the hydrogen bonds among water molecules deteriorate,reducing the matrix strength.A low Ca/Si ratio results in an increase in water molecules and a decrease in the ionic bonds combined with Ca^(2+).The hydrogen bonds among water molecules cannot withstand high stresses,resulting in a reduction in strength.The water absorption of the FA-CSH model is negatively correlated with the FA dosage and Ca/Si ratio.The use of optimal FA dosage and Ca/Si ratio leads to suitable water absorption,which further affects the failure mode of FA-CSH. 展开更多
关键词 fly ash cemented tailings backfill calcium/silica ratio microstructure molecular dynamics simulation
下载PDF
Experimental study on dynamic mechanical property of cemented tailings backfill under SHPB impact loading 被引量:21
5
作者 Yu-ye Tan Xin Yu +2 位作者 Davide Elmo Lin-hui Xu Wei-dong Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第4期404-416,共13页
Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-s... Cemented tailings backfill(CTB) have increasingly been used in recent years to improve the stability of mining stopes in deep underground mines. Deep mining processes are often associated with rock bursting and high-speed dynamic loading conditions. Therefore, it is important to investigate the characteristics and dynamic mechanical behavior of CTB. This paper presents the results of dynamic tests on CTB specimens with different cement and solid contents using a split Hopkinson pressure bar(SHPB). The results showed that some CTB specimens exhibited one to two lower stress peaks after reaching dynamic peak stress before they completely failed. The greater the cement-to-tailings ratio is, the more obvious the strain reaction. This property mainly manifested as follows. First,the dynamic peak stress increased with the increase of the cement-to-tailings ratio when the impact velocity was fixed. Second, the dynamic peak stress had a quadratic relationship with the average stress rate. Third, the cement-to-tailings ratio could enhance the increase rate of dynamic peak stress with strain rate. In addition, the dynamic strength enhancement factor K increased with the increase of strain rate, and its value was larger than that of the rock samples. The failure modes of CTB specimens under low-speed impact were tensile failure and X conjugate shear failure, where were nearly the same as those under static uniaxial and triaxial compression. The CTB specimens were crushed and broken under critical strain, a failure mode similar to that of low-strength concrete. The results of the experimental research can improve the understanding of the dynamic mechanical properties of CTB and guide the strength design of deep mining backfills. 展开更多
关键词 impact loading test cemented tailings backfill dynamic mechanical properties SPLIT Hopkinson pressure BAR
下载PDF
Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill 被引量:10
6
作者 吴迪 蔡嗣经 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1956-1964,共9页
Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process ca... Cemented tailings backfill(CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic,thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures. 展开更多
关键词 cemented tailings backfill HYDRATION water seepage flow pore water pressure coupled model
下载PDF
Revisiting factors contributing to the strength of cemented backfill support system:A review
7
作者 N.M.Chiloane F.K.Mulenga 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1615-1624,共10页
This paper provides a review of the intrinsic and extrinsic factors affecting the uniaxial compressive strength(UCS)of cemented tailings backfill(CTB).The consideration is that once CTB is poured into underground stop... This paper provides a review of the intrinsic and extrinsic factors affecting the uniaxial compressive strength(UCS)of cemented tailings backfill(CTB).The consideration is that once CTB is poured into underground stopes,its strength is heavily influenced by factors internal to the CTB as well as the surrounding mining environments.Peer-reviewed journal articles,books,and conference papers published between 2000 and 2022 were searched electronically from various databases and reviewed.Additional sources,such as doctoral theses,were obtained from academic repositories.An important finding from the review is that the addition of fibers was reported to improve the UCS of CTB in some studies while decrease in others.This discrepancy was accounted to the different properties of fibers used.Further research is therefore needed to determine the“preferred”fiber to be used in CTB.Diverging findings were also reported on the effects of stope size on the UCS of CTB.Furthermore,the use of fly ash as an alternative binder may be threatened in the future when reliance on the coal power declines.Therefore,an alternative cementitious by-product to be used together with furnace slag may be required in the future.Finally,while most studies on backfill focused on single-layered structures,layered backfill design models should also be investigated. 展开更多
关键词 cemented tailings backfill(ctb) Uniaxial compressive strength(UCS) Extrinsic factors Intrinsic factors Underground support
下载PDF
Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading 被引量:9
8
作者 Yu-ye Tan Elmo Davide +2 位作者 Yu-cheng Zhou Wei-dong Song Xiang Meng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期140-151,共12页
Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to di... Cemented tailings backfill(CTB)structures are important components of underground mine stopes.It is important to investigate the characteristics and dynamic behavior of CTB materials because they are susceptible to disturbance by dynamic loading,such as excavation and blasting.In this study,the authors present the results of a series of Split-Hopkinson pressure bar(SHPB)single and cyclic impact loading tests on CTB specimens to investigate the long-term dynamic mechanical properties of CTB.The stress-strain relationship,dynamic strength,and dynamic failure characteristics of CTB specimens are analyzed and discussed to provide valuable conclusions that will improve our knowledge of CTB long-term mechanical behavior and characteristics.For instance,the dynamic peak stress under cyclic impact loading is approximately twice that under single impact loading,and the CTB specimens are less prone to fracture when cyclically loaded.These findings and conclusions can provide a new set of references for the stability analysis of CTB materials and help guide mine designers in reducing the amount of binding agents and the associated mining cost. 展开更多
关键词 cyclic impact loading cemented tailings backfill dynamic mechanical properties Split–Hopkinson pressure bar dynamic peak stress
下载PDF
Strength and deformation behaviors of cemented tailings backfill under triaxial compression 被引量:10
9
作者 XU Wen-bin LIU Bin WU Wei-lü 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3531-3543,共13页
It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformat... It is of great significance for safety reason to obtain the triaxial compressive properties of cemented tailings backfill(CTB).The influence of cement content,curing age and confining pressure on strength and deformation properties of CTB was examined and discussed.Results indicate that the triaxial compressive and deformation behavior of CTB is strongly affected by the cement content,curing age and confining pressure.The increase in cement content,curing age and confining pressure leads to a change in stress−strain behavior and an increase in the axial strain at failure and post-peak strength loss.The cohesion of CTB rises as the curing age and cement content increase.However,the enhancement in internal friction angle is trivial and negligible.It should be noted that the failure pattern of CTB samples in triaxial compression is mainly along a shear plane,the confining pressure restrains the lateral expansion and the bulging failure pattern is dominantly detected in CTB samples as curing age length and cement content increase.The results will help to better understand the triaxial mechanical and deformation behavior of CTB. 展开更多
关键词 cemented tailings backfill triaxial compressive strength volumetric strain elastic modulus COHESION friction angle
下载PDF
Effect of polypropylene fiber and coarse aggregate on the ductility and fluidity of cemented tailings backfill 被引量:8
10
作者 YAN Rong-fu LIU Jia-ming +3 位作者 YIN Sheng-hua ZOU Long KOU Yong-yuan ZHANG Peng-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期515-527,共13页
Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-ag... Adding polypropylene(PP)fibers and coarse aggregates has become a popular way to enhance the strength and stability of the cemented tailings backfilling(CTB)body.It is essential to explore the influence of tailings-aggregate ratio and fiber content on the mechanical properties of CTB samples.The comprehensive tests of the unconfined compressive strength(UCS),slump and microstructure were designed,and the regression models were established to characterize the effect of the strength,ductility and fluidity.The results indicate that the tailings-aggregate ratio of 5:5 and PP fiber content of 0.5 kg/m^(3) are the optimum point considering the UCS,cracking strain,peak strain and post-peak ductility.The tailings-aggregate ratio is consistent with the unary quadratic to the UCS and a linear model with a negative slope to the slump.Microstructural analysis indicates that PP fiber tends to bridge the cracks and rod-mill sand to serve as the skeleton of the paste matrix,which can enhance the compactness and improve the ductility of the CTB.The results presented here are of great significance to the understanding and application of coarse aggregates and fibers to improve the mechanical properties of CTB. 展开更多
关键词 cemented tailings backfill polypropylene fiber coarse aggregate unconfined compressive strength postpeak ductility FLUIDITY
下载PDF
Numerical simulation on thermal accumulation of cemented tailings backfill 被引量:2
11
作者 ZHANG Xiao-yan ZHAO Min +4 位作者 LIU Lang HUAN Chao SONG KI-IL XU Mu-yan WEN De 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期2221-2237,共17页
Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of therm... Based on the collaborative exploitation of deep mineral resources and geothermal resources, the thermal accumulation process of cemented tailings backfill(CTB) was studied by numerical simulation. The effects of thermal accumulation time, slurry proportions and temperature conditions on the thermal accumulation of backfill are analyzed, the influence of the heat conduction between backfill and surrounding rock, the heat convection between backfill and airflow on thermal accumulation were compared simultaneously. The results show that the total thermal accumulation capacity increases by approximately 85% within 10-90 d. The influence of surrounding rock temperature and initial temperature on total thermal accumulation capacity is more significant and it is approximately 2 times of the influence of slurry proportions under the conditions of this study. It is clear that the rise of surrounding rock temperature and the decrease of initial temperature can improve the thermal accumulation capacity more effectively. Moreover, the heat conduction accounts for a considerable proportion in the process of thermal accumulation, the average heat conduction capacity is approximately 25 times of the heat convection capacity. This study can provide the theoretical basis and application reference for the optimization of thermal accumulation process of CTB in the exploitation of geothermal resources. 展开更多
关键词 cemented tailings backfill thermal accumulation heat conduction heat convection total thermal accumulation capacity
下载PDF
Microstructural evolution and strengthening mechanism of aligned steel fiber cement-based tail backfills exposed to electromagnetic induction
12
作者 Xihao Li Shuai Cao Erol Yilmaz 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2390-2403,共14页
Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative... Cemented tailings backfill(CTB)not only boosts mining safety and cuts surface environmental pollution but also recovers ores previously retained as pillars,thereby improving resource utilization.The use of alternative reinforcing products,such as steel fiber(SF),has continuously strengthened CTB into SFCTB.This approach prevents strength decreases over time and reinforces its long-term durability,especially when mining ore in adjacent underground stopes.In this study,various microstructure and strength tests were performed on SFCTB,considering steel fiber ratio and electromagnetic induction strength effects.Lab findings show that combining steel fibers and their distribution dominantly influences the improvement of the fill’s strength.Fill’s strength rises by fiber insertion and has an evident correlation with fiber insertion and magnetic induction strength.When magnetic induction strength is 3×10^(-4) T,peak uniaxial compressive stress reaches 5.73 MPa for a fiber ratio of 2.0vol%.The cracks’expansion mainly started from the specimen’s upper part,which steadily expanded downward by increasing the load until damage occurred.The doping of steel fiber and its directional distribution delayed crack development.When the doping of steel fiber was 2.0vol%,SFCTBs showed excellent ductility characteristics.The energy required for fills to reach destruction increases when steel-fiber insertion and magnetic induction strength increase.This study provides notional references for steel fibers as underground filling additives to enhance the fill’s durability in the course of mining operations. 展开更多
关键词 electromagnetic induction steel fiber cemented tailings backfill strength microstructure
下载PDF
Damage failure of cemented backfill and its reasonable match with rock mass 被引量:31
13
作者 刘志祥 兰明 +1 位作者 肖思友 郭虎强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期954-959,共6页
In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested ... In order to study the failure mechanism of backfill and the reasonable matches between backfill and rock mass, and to achieve the object of safe and efficient mining in metal mine, four types of backfills were tested under uniaxial compression loading, with cement?tailing ratios of 0.250:1, 0.125:1, 0.100:1 and 0.083:1, respectively. With the help of the stress?strain curves, the deformation and failure characteristics of different backfills with differing cement?tailing ratios were analyzed. Based on the experimental results, the damage constitutive equations of cemented backfills with four cement?tailing ratios were proposed on the basis of damage mechanics. Moreover, comparative analysis of constitutive model and experimental results were made to verify the reliability of the damage model. In addition, an energy model using catastrophe theory to obtain the instability criteria of system was established to study the interaction between backfill and rock mass, and then the system instability criterion was deduced. The results show that there are different damage characteristics for different backfills, backfills with lower cement?tailing ratio tend to have a lower damage value when stress reaches peak value, and damage more rapidly and more obviously in failure process after peak value of stress; the stiffness and elastic modulus of rock mass with lower strength are more likely to lead to system instability. The results of this work provide a scientific basis for the rational strength design of backfill mine. 展开更多
关键词 cemented tailings backfill rock mass damage constitutive equation catastrophe theory MATCH instability criterion
下载PDF
Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage 被引量:20
14
作者 Ghirian Alireza Fall Mamadou 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期809-817,共9页
In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under... In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill(CPB) when subjected to various loading conditions under different curing scenarios. The different curing scenarios that are simulated include:(1)drained and undrained conditions,(2) different filling rates,(3) different filling sequences, and(4) different curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drainage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress.Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition. 展开更多
关键词 cemented paste backfill tailings Pore pressure Curing under stress Plug fill Cement
下载PDF
Underground void filling by cemented mill tailings 被引量:19
15
作者 Choudhary Bhanwar Singh Kumar Santosh 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期893-900,共8页
Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using m... Underground mining always create voids.These voids can cause subsidence of surface.So it is always a demand to fill the void in such a manner that the effect of underground mining can be minimized.Void filling using mill tailings especially in metal mining is one of the best techniques.The tailings produced in milling process have traditionally been disposed in tailing ponds creating a waste disposal and environmental problems in terms of land degradation,air and water pollution,etc.This disposal practice is more acute in the metal milling industry where the fine grinding,required for value liberation,results in the production of very fine tailings in large percentage.This paper includes discussions on the effectiveness of different paste mixes with varying cement contents in paste backfilling operations.The results revealed that material composition and use of super plasticizer strongly influenced the strength of cemented backfill. 展开更多
关键词 UNDERGROUND cemented mill tailings backfillING Metal mining Super plasticizer
下载PDF
Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites 被引量:8
16
作者 Jiajian Li Shuai Cao +1 位作者 Erol Yilmaz Yunpeng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期345-355,共11页
The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image c... The ordinary cemented tailings backfill(CTB)is a cement-based composite prepared from tailings,cementitious materials,and water.In this study,a series of laboratory tests,including uniaxial compression,digital image correlation measurement,and scanning electron microscope characteristics of fiber-reinforced CTB(FRCTB),was conducted to obtain the uniaxial compressive strength(UCS),failure evolution,and microstructural characteristics of FRCTB specimens.The results show that adding fibers could increase the UCS values of the CTB by 6.90%to 32.76%.The UCS value of the FRCTB increased with the increase in the polypropylene(PP)fiber content.Moreover,the reinforcement effect of PP fiber on the CTB was better than that of glass fiber.The addition of fiber could increase the peak strain of the FRCTB by0.39%to 1.45%.The peak strain of the FRCTB increased with the increase in glass fiber content.The failure pattern of the FRCTB was coupled with tensile and shear failure.The addition of fiber effectively inhibited the propagation of cracks,and the bridging effect of cracks by the fiber effectively improved the mechanical properties of the FRCTB.The findings in this study can provide a basis for the backfilling design and optimization of mine backfilling methods. 展开更多
关键词 cemented tailings backfill uniaxial compressive strength combined fiber reinforcement digital image correlation microstructural characteristics
下载PDF
High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar 被引量:6
17
作者 Xin Chen Xiuzhi Shi +3 位作者 Jian Zhou Enming Li Peiyong Qiu Yonggang Gou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期387-399,共13页
The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinso... The stability of cemented paste backfill(CPB)is threatened by dynamic disturbance,but the conventional low strain rate laboratory pressure test has difficulty achieving this research purpose.Therefore,a split Hopkinson pressure bar(SHPB)was utilized to investigate the high strain rate compressive behavior of CPB with dynamic loads of 0.4,0.8,and 1.2 MPa.And the failure modes were determined by macro and micro analysis.CPB with different cement-to-tailings ratios,solid mass concentrations,and curing ages was prepared to conduct the SHPB test.The results showed that increasing the cement content,tailings content,and curing age can improve the dynamic compressive strength and elastic modulus.Under an impact load,a higher strain rate can lead to larger increasing times of the dynamic compressive strength when compared with static loading.And the dynamic compressive strength of CPB has an exponential correlation with the strain rate.The macroscopic failure modes indicated that CPB is more seriously damaged under dynamic loading.The local damage was enhanced,and fine cracks were formed in the interior of the CPB.This is because the CPB cannot dissipate the energy of the high strain rate stress wave in a short loading period. 展开更多
关键词 High strain rate Compressive strength behavior cemented paste backfill Split Hopkinson pressure bar tailings
下载PDF
Investigation of the Effect of Using Different Fly Ash on the Mechanical Properties in Cemented Paste Backfill 被引量:3
18
作者 Tuylu S 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期620-627,共8页
In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the... In the cemented paste backfill(CPB)method,which can also be used for fortification purposes in mines,different additive materials with pozzolanic properties can be employed as substitutes instead of cement that is the main binder.One of the most popular pozzolanic materials that can be employed instead of cement is fly ash,which is thermal power plant tailings.But the compositions of fly ash and tailings used in high amounts in the CPB method,as well as the chemical structures that these materials form by interacting with the cement binder,affect the mechanical properties of the material depending on time.In this study,fly ash with 4 different chemical compositions(TFA,SFA,YFA,and CFA)was used as a cement substitute in CPB.By substituting fly ash with different chemical compositions in different proportions,CPB samples were created and their strength was elucidated according to 28,56,and 90-day curing times.The results of the study revealed that TFA with the highest CaO/SiO_(2) and SO_(3) ratios remained stable at the strength values of 6 MPa(total 9% binder)and 10 MPa(total 11% binder)in the long term.However,CFA with the lowest CaO/SiO_(2),SO_(3),and the highest SiO_(2)+Al_(2)O_(3)+Fe_(2)O_(3) ratios resulted in the greatest strength increase at a 20%substitution rate(11% of the total binder).Nevertheless,it was found that the SFA,which is in Class F,increased its strength in the early period based on the CaO rate. 展开更多
关键词 tailings disposal cemented paste backfill fly ash chemical properties STRENGTH
下载PDF
Mill tailings based composites as paste backfill in mines of U-bearing dolomitic limestone ore 被引量:1
19
作者 Sandeep Panchal Debasis Deb T.Sreenivas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期310-322,共13页
This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of t... This paper elaborates on the development of paste backfill using mill tailings generated during the processing of a uranium ore deposit hosted in dolomitic limestone. The tailings have been characterized in terms of the physical, chemical and mineralogical properties. Time-dependent rheological behaviors and geotechnical properties of cemented paste backfill(CPB) are also determined. The studies show that the mill tailing has the potential to form paste and the CPB has adequate strength to provide support to mine pillars, roofs, and walls. 展开更多
关键词 Mining engineering Uranium ore deposit tailings cemented paste backfill(CPB) Rheology Compressive strength
下载PDF
Carbonate-activated binder modified by supplementary materials for mine backfill and the associated heavy metal immobilization effects
20
作者 Xinghang Dai Xiaozhong Gu +3 位作者 Jingru Zheng Liang Zhao Le Zhou Haiqiang Jiang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第8期1548-1559,共12页
Cemented paste backfill(CPB)is one of the effective methods for resource utilization of tailings,but the high cost of ordinary Portland cement(OPC)limits its utilization.Considering the poor performance of Na_(2)CO_(3... Cemented paste backfill(CPB)is one of the effective methods for resource utilization of tailings,but the high cost of ordinary Portland cement(OPC)limits its utilization.Considering the poor performance of Na_(2)CO_(3)-activated binders,in this work,supplementary materials,including CaO,MgO,and calcined layered double hydroxide(CLDH),were used to modify their properties with the aim of finding an alternative binder to OPC.Isothermal calorimetry,X-ray diffraction,and thermogravimetric analyses were conducted to explore the reaction kinetics and phase assembles of the binder.The properties of the CPB samples,such as flowability,strength development,and heavy metal immobilization effects,were then investigated.The results show that the coupling utilization of MgO and CLDH showed good performance.The strength of the Mg_(2)-CLDH_(3) sample was approximately 2.94 MPa after curing for 56 d,which was higher than that of the OPC-based sample.Moreover the cost of the modified Na_(2)CO_(3)-activated binder was lower than that of the OPC-based binder.Modified sample showed satisfactory heavy metal immobilization effects.These findings demonstrate that carbonate-activated binder modified by supplementary materials can be suitable in CPB. 展开更多
关键词 tailings cemented paste backfill sodium carbonate environmentally friendly heavy metals
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部