The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of su...The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.展开更多
Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history...Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma'anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (〈45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.展开更多
The rock series, rock types and Sr-Nd isotopic dating of the Cenozoicvolcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of thespreading age of the South China Sea, the Cenozoic vo...The rock series, rock types and Sr-Nd isotopic dating of the Cenozoicvolcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of thespreading age of the South China Sea, the Cenozoic volcanic rocks are divided into three stages: thepre-spreading stage, the spreading stage and the post-spreading stage. The deep processcharacteristics of the asthenosphere and lithosphere may be inferred from the study on primarybasaltic magma. The top layers of the asthenosphere both in the spreading stage and in thepre-spreading stage are closer to the earth surface than that in the post-spreading stage. From thepre-spreading stage to the spreading stage, the top layer of the asthenosphere decreased in depth,while the amount of interstitial partial melts increased. The evolution of the primary basalticmagma shows a progressive evolution sequence of the rifting volcanism and a faster lithosphericspreading velocity. From the spreading stage to the post-spreading stage, the top layer of theasthenosphere gradually increased in depth, but the amount of interstitial partial melts decreased.The evolution of primary basaltic magma shows a retrogressive evolution sequence of the riftingvolcanism and a gradual decrease in the lithospheric spreading velocity. The depth recognized by thestudy on the Cenozoic volcanism demonstrates the deep environment for the formation and evolutionof the South China Sea.展开更多
Cenozoic volcanic rocks in the Fildes Peninsula are composed of High-Al basalt, basaltfc andesite, andesite, and dacite belonging to a calc-alkaline volcanic series with low-K and high-Al characteristics. Using a new ...Cenozoic volcanic rocks in the Fildes Peninsula are composed of High-Al basalt, basaltfc andesite, andesite, and dacite belonging to a calc-alkaline volcanic series with low-K and high-Al characteristics. Using a new indicator, the Sr / Ca-Ba / Ca, systematics proposed by Onuma (1980, 1981) and Sr, Ba, Ca concentrations in volcanic lavas and subvolcanic rocks, the authors find that the high-Al basaltic volcanic rocks either in volcanic strata or in subvolcanic intrusives were formed from a primary magma, in different stages through the fractional crystallization of clinopyro-xene(Cpx)and plagioclase (P1) in the process of magmatic evolution, resulting in the formation of basaltic-andesitic, andesitic and dacitic rocks.展开更多
At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of...At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.展开更多
The major elements, trace elements. K-Ar age and Sr-Nd-Pb isotopie systems ofthe Cenozoic volcanic rocks in Daheishan Island and Cishan, Penglai, Shandong Province aremeasured. The volcanic rocks ( olivine-nephelinite...The major elements, trace elements. K-Ar age and Sr-Nd-Pb isotopie systems ofthe Cenozoic volcanic rocks in Daheishan Island and Cishan, Penglai, Shandong Province aremeasured. The volcanic rocks ( olivine-nephelinite and nephcline-basanite ) in Daheishan Islanderupted periodically in an interval of 0.32 Ma, from 8.72 Ma. 8.39 Ma. 8.08 Ma to 7.73 Ma. Thevolcanic rocks arc all rich in light REEs. They are similar to the OIB-type alkali basalt in thetrace elements normalized model by primordial mantle: rich in high field elements such as Nb and Ta,and imcompatible elements such as Cs. Rb, Ba, Th. U. The volcanic rocks show a depletion of K andRb elements. It is suggested by the trace elements that the olivine-nephelinite in Daheishan Islandis originated from deep resources under the continental mantle. ε Nd (0) values of the volcanicrocks in Daheishan Island and Cishan are 5.31~8.51 and 7.33 respectively, suggesting that thevolcanic rocks are from the depleted mantle resources, which have higher Sm/Nd ratios than the CHUR.^(143)Nd /^(144)Nd ratios ot Daheishan Island olivine-nephelinite and Cishan alkali basalts are0.512 910~0.513 074 and 0.513 014 respectively. The ^(87)Sr /^(86)Sr of Daheishan Island volcanicrocks are lower than that of Cishan, 0.703 427 ~0.703 482 and 0.703 895 respectively. The DaheishanIsland olivine-nephelinite has the Pb isotopie values as follows: ^(206)Pb/^(204)Pb= 18.028 9~17.972 8. ^(207)Pb / ^(204)Pb = 15.435 8 ~15.402 2 and ^(208)Pb /^(204)Pb = 38.087 6~37.997 5.lower than those of Cishan basanite. The Cishan basanite has ^(206)Pb/^(204)Pb= 18.240 1. ^(207)Pb/^(204)Pb= 15.564 5 and ^(208)Pb /^(204)Pb = 38.535. The authors suggest that theolivine-nephelinite in Daheishan Island is similar to the E-type MORB or Hawaii OIB, and the alkalibasalts in Cishan similar to the Kerguelen OIB. The dominant mantle components of DM+PREMA andperhaps DM ( Dupal type ) are the dominant mantle components for volcanic rocks in Daheishan Islandand Cishan. The PREMA component plays an important role.展开更多
From a synthesis of data on volcanic evolution,movement of the lithosphere,and mantle velocities in the Baikal-Mongolian region,we propose a comprehensive model for deep dynamics of Asia that assumes an important role...From a synthesis of data on volcanic evolution,movement of the lithosphere,and mantle velocities in the Baikal-Mongolian region,we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi,Baikal,and North Transbaikal transition-layer melting anomalies.This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage(i.e.in the early late Cretaceous) due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker,Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific.At the latest geodynamic stage,Asia was involved in east-southeast movement,and the Pacific plate moved in the opposite direction with subduction under Asia.The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area.These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab.A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab,formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence.The early—middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens.We propose that extension at the Baikal Rift was caused by deviator flowing mantle material,initiated under the moving lithosphere in the Baikal melting anomaly.Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.展开更多
High-Mg lavas are characteristic of the mid-Miocene volcanism in Inner Asia.In the Vitim Plateau,small volume high-Mg volcanics erupted at 16-14 Ma.and were followed with voluminous moderate-Mg lavas at 14-13 Ma.In th...High-Mg lavas are characteristic of the mid-Miocene volcanism in Inner Asia.In the Vitim Plateau,small volume high-Mg volcanics erupted at 16-14 Ma.and were followed with voluminous moderate-Mg lavas at 14-13 Ma.In the former unit,we have recorded a sequence of(1) initial basaltic melts,contaminated by crustal material,(2) uncontaminated high-Mg basanites and basalts of transitional(K-Na-K) compositions,and(3) picrobasalts and basalts of K series;in the latter unit a sequence of(1) initial basalts and basaltic andesites of transitional(Na-K-Na) compositions and(2) basalts and trachybasalts of K-Na series.From pressure estimation,we infer that the high-Mg melts were derived from the sublithospheric mantle as deep as 150 km,unlike the moderate-Mg melts that were produced at the shallow mantle.The 14-13 Ma rock sequence shows that initial melts equilibrated in a garnet-free mantle source with subsequently reduced degree of melting garnet-bearing material.No melting of relatively depleted lithospheric material,evidenced by mantle xenoliths,was involved in melting,however.We suggest that the studied transition from high-to moderate-Mg magmatism was due to the mid-Miocene thermal impact on the lithosphere by hot sub-lithospheric mantle material from the Transbaikalian low-velocity(melting) domain that had a potential temperature as high as 1510℃.This thermal impact triggered rifting in the lithosphere of the Baikal Rift Zone.展开更多
A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts,northeast China.The source region and potassium-rich mechanism of the potassic rocks remain highly disp...A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts,northeast China.The source region and potassium-rich mechanism of the potassic rocks remain highly disputed.In this paper,the major elements,trace elements,and Sr-Nd-Pb isotopes of the volcanic rocks in Keluo(KL)and Wudalianchi(WDLC)volcanic districts were analyzed systematically.The results show that the volcanic rocks are characterized by high K2O(4.36wt.%-6.13wt.%),remarkable enrichment in LREEs and LILEs,as well as the strong fractionation of HREEs.The isotopic characteristics with high 87Sr/86Sr(0.704990-0.705272),low 143Nd/144Nd(0.512306-0.512417),low 206Pb/204Pb(16.546-17.135)and 207Pb/204Pb(15.002-15.783)of the volcanic rocks suggest the involvement of EM-I-type mantle.On the basis of the geochemical characteristics,the potassium-rich volcanic magma originated from the new SCLM forming after delamination of the ancient SCLM,with metasomatism of the potassium-rich fluids released from the ancient lower crust during the Late Mesozoic.The proposed genetic model assumes the source which represented by a phlogopite-bearing garnet peridotite(with modal garnet in the range of 2%-10%)experienced very low degrees(i.e.,~0.5)of partial melting.During Cenozoic,the lithosphere in northeast China was affected by the extension and decompression of continental rift,and the metasomatized SCLM underwent low degree partial melting,resulting in the formation of potassium-rich primitive basaltic magma.展开更多
文摘The post-collisional Cenozoic basic volcanic rocks in NE Turkey show temporal variations in whole-rock lithophile element and highly siderophile element(HSE)systematics that are mainly associated with the nature of sub-continental lithospheric mantle(SCLM)sources and parental melt generation.So far,the traditional whole-rock lithophile geochemical data of these basic volcanic rocks have provided important constraints on the nature of SCLM sources.Integrated lithophile element and HSE geochemical data of these basic volcanic rocks also reveal the heterogeneity of the SCLM source,which is principally related to variable metasomatism resulting from previous subduction(s)and post-collisional mantle-crust interactions in an extensional setting.Lithophile element geochemical features suggest that the parental magmas have derived from metasomatized spinel-to garnet-bearing SCLM sources for Eocene and Miocene basic volcanic rocks with subduction signatures whereas originated from spinel-to garnet-bearing SCLM sources for Mio-Pliocene and Plio-Quaternary basaltic volcanic rocks without the subduction signature.Lithophile element and HSE geo-chemistry also reveal that Eocene and Miocene basic vol-canic rocks were affected by more pronounced crustal contamination than the basaltic volcanic rocks of Mio-Pliocene and Quaternary.Furthermore,the integrated lithophile element and HSE compositions of these basic volcanic rocks,together with the regional asymmetric lithospheric delamination model,reveal that the compositional variation(especially due to metasomatism)was significant temporally in the heterogeneity of the SCLM sources from which parental magmas formed during the Cenozoic era.
基金supported by the Chinese Ministry of Science and Technology(Sinoprobe-05-03)Doctoral Fund of Ministry of Education of China(20110022120003)+1 种基金the Fundamental Research Funds for the Central UniversitiesOpen Fund of State Key Laboratory of Geological Processes and Mineral Resources(GPMR2011)
文摘Tengchong Cenozoic volcanics that have record key information on the tectonic evolution and mantle features of the southeast margin of the Tibetan Plateau are of great importance because of its unique eruption history spanning the entire Quaternary period. Magma origin and evolution of Tengchong Cenozoic volcanic rocks were studied on the basis of Nd-Sr-Pb isotope and major and trace element data from different eruptions in the Ma'anshan area. Different samples within one eruption show relative identical lithologies, chemical and isotopic compositions. However, the geochemical features for the five eruptions are distinct from each other. These volcanic rocks show low Mg# values (〈45), moderate to high fractionation of LREEs and HREEs, and enrichment of Pb and Ba and depletion of Nb. Tengchong Cenozoic volcanic rocks were derived from an enriched mantle based on Nd-Sr-Pb isotopic studies. And lines of evidence show that crustal contamination should be involved before the eruption of different periods of Tengchong Cenozoic volcanic rocks. Older subducted components may be responsible for adakite recycling at various stages of evolution, which results in the origin of the enriched mantle source magma accounting for the isotopic features of Tengchong Cenozoic volcanic rocks. Segregated primitive magma pulsating injected into magma chamber, fractional crystallized and contaminated with crust component. Finally, magmas with distinct chemical and isotopic compositions for each eruption formed. The extension of the northeast segment of the Yingjiang tectonic belt triggered the pulsating eruption of the Cenozoic volcanics in the Tengchong area.
文摘The rock series, rock types and Sr-Nd isotopic dating of the Cenozoicvolcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of thespreading age of the South China Sea, the Cenozoic volcanic rocks are divided into three stages: thepre-spreading stage, the spreading stage and the post-spreading stage. The deep processcharacteristics of the asthenosphere and lithosphere may be inferred from the study on primarybasaltic magma. The top layers of the asthenosphere both in the spreading stage and in thepre-spreading stage are closer to the earth surface than that in the post-spreading stage. From thepre-spreading stage to the spreading stage, the top layer of the asthenosphere decreased in depth,while the amount of interstitial partial melts increased. The evolution of the primary basalticmagma shows a progressive evolution sequence of the rifting volcanism and a faster lithosphericspreading velocity. From the spreading stage to the post-spreading stage, the top layer of theasthenosphere gradually increased in depth, but the amount of interstitial partial melts decreased.The evolution of primary basaltic magma shows a retrogressive evolution sequence of the riftingvolcanism and a gradual decrease in the lithospheric spreading velocity. The depth recognized by thestudy on the Cenozoic volcanism demonstrates the deep environment for the formation and evolutionof the South China Sea.
文摘Cenozoic volcanic rocks in the Fildes Peninsula are composed of High-Al basalt, basaltfc andesite, andesite, and dacite belonging to a calc-alkaline volcanic series with low-K and high-Al characteristics. Using a new indicator, the Sr / Ca-Ba / Ca, systematics proposed by Onuma (1980, 1981) and Sr, Ba, Ca concentrations in volcanic lavas and subvolcanic rocks, the authors find that the high-Al basaltic volcanic rocks either in volcanic strata or in subvolcanic intrusives were formed from a primary magma, in different stages through the fractional crystallization of clinopyro-xene(Cpx)and plagioclase (P1) in the process of magmatic evolution, resulting in the formation of basaltic-andesitic, andesitic and dacitic rocks.
基金The Natural gas formation rules and key technologies for exploration in the western exploration area KT2022A02the Science and Technology Fundamental Resources Investigation Program under contract No. 2023FY101500+2 种基金the National Key Research and Development Program of China under contract No. 2023YFC3012005the Central Public-interest Scientific Institution Basal Researchunder contract No. CEAIEF20230505。
文摘At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.
基金supported by the National Major Fundamental Research and Development Project(No.G2000046703).
文摘The major elements, trace elements. K-Ar age and Sr-Nd-Pb isotopie systems ofthe Cenozoic volcanic rocks in Daheishan Island and Cishan, Penglai, Shandong Province aremeasured. The volcanic rocks ( olivine-nephelinite and nephcline-basanite ) in Daheishan Islanderupted periodically in an interval of 0.32 Ma, from 8.72 Ma. 8.39 Ma. 8.08 Ma to 7.73 Ma. Thevolcanic rocks arc all rich in light REEs. They are similar to the OIB-type alkali basalt in thetrace elements normalized model by primordial mantle: rich in high field elements such as Nb and Ta,and imcompatible elements such as Cs. Rb, Ba, Th. U. The volcanic rocks show a depletion of K andRb elements. It is suggested by the trace elements that the olivine-nephelinite in Daheishan Islandis originated from deep resources under the continental mantle. ε Nd (0) values of the volcanicrocks in Daheishan Island and Cishan are 5.31~8.51 and 7.33 respectively, suggesting that thevolcanic rocks are from the depleted mantle resources, which have higher Sm/Nd ratios than the CHUR.^(143)Nd /^(144)Nd ratios ot Daheishan Island olivine-nephelinite and Cishan alkali basalts are0.512 910~0.513 074 and 0.513 014 respectively. The ^(87)Sr /^(86)Sr of Daheishan Island volcanicrocks are lower than that of Cishan, 0.703 427 ~0.703 482 and 0.703 895 respectively. The DaheishanIsland olivine-nephelinite has the Pb isotopie values as follows: ^(206)Pb/^(204)Pb= 18.028 9~17.972 8. ^(207)Pb / ^(204)Pb = 15.435 8 ~15.402 2 and ^(208)Pb /^(204)Pb = 38.087 6~37.997 5.lower than those of Cishan basanite. The Cishan basanite has ^(206)Pb/^(204)Pb= 18.240 1. ^(207)Pb/^(204)Pb= 15.564 5 and ^(208)Pb /^(204)Pb = 38.535. The authors suggest that theolivine-nephelinite in Daheishan Island is similar to the E-type MORB or Hawaii OIB, and the alkalibasalts in Cishan similar to the Kerguelen OIB. The dominant mantle components of DM+PREMA andperhaps DM ( Dupal type ) are the dominant mantle components for volcanic rocks in Daheishan Islandand Cishan. The PREMA component plays an important role.
基金supported by the Russian Science Foundation for Basic Research(project 14-05-313228)
文摘From a synthesis of data on volcanic evolution,movement of the lithosphere,and mantle velocities in the Baikal-Mongolian region,we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi,Baikal,and North Transbaikal transition-layer melting anomalies.This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage(i.e.in the early late Cretaceous) due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker,Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific.At the latest geodynamic stage,Asia was involved in east-southeast movement,and the Pacific plate moved in the opposite direction with subduction under Asia.The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area.These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab.A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab,formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence.The early—middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens.We propose that extension at the Baikal Rift was caused by deviator flowing mantle material,initiated under the moving lithosphere in the Baikal melting anomaly.Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.
基金supported by the Russian Science Foundation for Basic Research(project 14-05-31328)
文摘High-Mg lavas are characteristic of the mid-Miocene volcanism in Inner Asia.In the Vitim Plateau,small volume high-Mg volcanics erupted at 16-14 Ma.and were followed with voluminous moderate-Mg lavas at 14-13 Ma.In the former unit,we have recorded a sequence of(1) initial basaltic melts,contaminated by crustal material,(2) uncontaminated high-Mg basanites and basalts of transitional(K-Na-K) compositions,and(3) picrobasalts and basalts of K series;in the latter unit a sequence of(1) initial basalts and basaltic andesites of transitional(Na-K-Na) compositions and(2) basalts and trachybasalts of K-Na series.From pressure estimation,we infer that the high-Mg melts were derived from the sublithospheric mantle as deep as 150 km,unlike the moderate-Mg melts that were produced at the shallow mantle.The 14-13 Ma rock sequence shows that initial melts equilibrated in a garnet-free mantle source with subsequently reduced degree of melting garnet-bearing material.No melting of relatively depleted lithospheric material,evidenced by mantle xenoliths,was involved in melting,however.We suggest that the studied transition from high-to moderate-Mg magmatism was due to the mid-Miocene thermal impact on the lithosphere by hot sub-lithospheric mantle material from the Transbaikalian low-velocity(melting) domain that had a potential temperature as high as 1510℃.This thermal impact triggered rifting in the lithosphere of the Baikal Rift Zone.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020001-1)Natural Science Foundation of Shandong Province(No.ZR2021MD083)+1 种基金National Natural Science Foundation of China(Grant Nos.41302102 and 41772190)Graduate Innovation Project of China University of Petroleum(East China)(No.YCX2021020).
文摘A series of Cenozoic potassium-rich volcanic rocks developed in the Xiaoguli-Keluo-Wudalianchi-Erkeshan districts,northeast China.The source region and potassium-rich mechanism of the potassic rocks remain highly disputed.In this paper,the major elements,trace elements,and Sr-Nd-Pb isotopes of the volcanic rocks in Keluo(KL)and Wudalianchi(WDLC)volcanic districts were analyzed systematically.The results show that the volcanic rocks are characterized by high K2O(4.36wt.%-6.13wt.%),remarkable enrichment in LREEs and LILEs,as well as the strong fractionation of HREEs.The isotopic characteristics with high 87Sr/86Sr(0.704990-0.705272),low 143Nd/144Nd(0.512306-0.512417),low 206Pb/204Pb(16.546-17.135)and 207Pb/204Pb(15.002-15.783)of the volcanic rocks suggest the involvement of EM-I-type mantle.On the basis of the geochemical characteristics,the potassium-rich volcanic magma originated from the new SCLM forming after delamination of the ancient SCLM,with metasomatism of the potassium-rich fluids released from the ancient lower crust during the Late Mesozoic.The proposed genetic model assumes the source which represented by a phlogopite-bearing garnet peridotite(with modal garnet in the range of 2%-10%)experienced very low degrees(i.e.,~0.5)of partial melting.During Cenozoic,the lithosphere in northeast China was affected by the extension and decompression of continental rift,and the metasomatized SCLM underwent low degree partial melting,resulting in the formation of potassium-rich primitive basaltic magma.