The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances...The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances.The random bifurcation of the projectile is studied using the idea of the Routh-Hurwitz stability criterion,the center manifold reduction,and the polar coordinates transformation.Then,an approximate analytical presentation for the stationary probability density function is found from the related Fokker–Planck equation.From the results,the random dynamical system of projectile generates three different dynamical behaviors with the changes of the bifurcation parameter and the noise strength,which can be a reference for projectile design.展开更多
In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of ...In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of the center manifolds and the associated canonical transformation are valuable tools for exploring the design space of libration point missions. This paper deals with the refinement of reduction to the center manifold procedure. In order to reduce the amount of calculation needed and avoid repetitive computation of the Poisson bracket, a modified method is presented. By using a polynomial optimization technique, the coordinate transformation is conducted more efficiently. In addition, an alternative way to do the canonical coordinate transformation is discussed, which complements the classical approach. Numerical simulation confirms that more accurate and efficient numerical exploration of the center manifold is made possible by using the refined method.展开更多
In this paper, we use a kind of main part symmetry scheme to study the center manifolds and Hop f bifurcations for ODEs, and set up a kind of method for calculation them.
基金supported by the Six Talent Peaks Project in Jiangsu Province,China(Grant No.JXQC-002)。
文摘The center manifold method has been widely used in the field of stochastic dynamics as a dimensionality reduction method.This paper studied the angular motion stability of a projectile system under random disturbances.The random bifurcation of the projectile is studied using the idea of the Routh-Hurwitz stability criterion,the center manifold reduction,and the polar coordinates transformation.Then,an approximate analytical presentation for the stationary probability density function is found from the related Fokker–Planck equation.From the results,the random dynamical system of projectile generates three different dynamical behaviors with the changes of the bifurcation parameter and the noise strength,which can be a reference for projectile design.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11403013 and 11672126)the Fundamental Research Funds for the Central Universities (Nos. 56XAA14093 and 56YAH12036)the Postdoctoral Foundation of Jiangsu Province (No. 1301029B)
文摘In the framework of the circular restricted three-body problem, the center manifolds associated with collinear libration points contain all the bounded orbits moving around these points. Semianalytical computation of the center manifolds and the associated canonical transformation are valuable tools for exploring the design space of libration point missions. This paper deals with the refinement of reduction to the center manifold procedure. In order to reduce the amount of calculation needed and avoid repetitive computation of the Poisson bracket, a modified method is presented. By using a polynomial optimization technique, the coordinate transformation is conducted more efficiently. In addition, an alternative way to do the canonical coordinate transformation is discussed, which complements the classical approach. Numerical simulation confirms that more accurate and efficient numerical exploration of the center manifold is made possible by using the refined method.
文摘In this paper, we use a kind of main part symmetry scheme to study the center manifolds and Hop f bifurcations for ODEs, and set up a kind of method for calculation them.