Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants ha...Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.展开更多
基金supported Australian Research Council (Nos. DP0559872 and DP0881739)
文摘Defect control at nanoscale of MgB2 by doping various nanoparticles including Ti, C, nano-diamond, and HOB4, and their roles played to enhance flux pinning force in MgB2 are compared and analyzed. These nanodopants have different chemical and physical properties, thus bring about different pinning efficiency, especially nanodopants with strong magnetic moment are particularly interesting as pinning centers in MgB2 since magnetic impurities usually have a stronger interaction with magnetic flux line than nonmagnetic impurities and may exert a stronger force to trap the flux lines when they are properly introduced into the superconducting matrix.