In this paper, a novel four dimensional hyper-chaotic system is coined based on the Chen system, which contains two quadratic terms and five system parameters. The proposed system can generate a hyper-chaotic attracto...In this paper, a novel four dimensional hyper-chaotic system is coined based on the Chen system, which contains two quadratic terms and five system parameters. The proposed system can generate a hyper-chaotic attractor in wide parameters regions. By using the center manifold theorem and the local bifurcation theory, a pitchfork bifurcation is demonstrated to arise at the zero equilibrium point. Numerical analysis demonstrates that the hyper-cha^tic system can generate complex dynamical behaviors, e.g., a direct transition from quasi-periodic behavior to hyper-chaotic behavior. Finally, an electronic circuit is designed to implement the hyper-chaotic system, the experimental results are consist with the numerical simulations, which verifies the existence of the hyper-chaotic attractor. Due to the complex dynamic behaviors, this new hyper-cha^tic system is useful in the secure communication.展开更多
In this article, a nonlinear mathematical model for innovation diffusion with stage structure which incorporates the evaluation stage (time delay) is proposed. The model is analyzed by considering the effects of ext...In this article, a nonlinear mathematical model for innovation diffusion with stage structure which incorporates the evaluation stage (time delay) is proposed. The model is analyzed by considering the effects of external as well as internal influences and other demographic processes such as emigration, intrinsic growth rate, death rate, etc. The asymptotical stability of the various equilibria is investigated. By analyzing the exponential characteristic equation with delay-dependent coefficients obtained through the variational matrix, it is found that Hopf bifurcation occurs when the evaluation period (time delay, T) passes through a critical value. Applying the normal form theory and the center manifold argument, we de- rive the explicit formulas determining the properties of the bifurcating periodic solutions. To illustrate our theoretical analysis, some numerical simulations are also included.展开更多
In this paper,we proposed an innovation diffusion model with three compartments to investigate the diffusion of an innovation(product)in a particular region.The model exhibits two equilibria,namely,the adopter-free an...In this paper,we proposed an innovation diffusion model with three compartments to investigate the diffusion of an innovation(product)in a particular region.The model exhibits two equilibria,namely,the adopter-free and an interior equilibrium.The existence and local stability of the adopter-free and interior equilibria are explored in terms of the effective Basic Influence Number(BIN)R_(A).It is investigated that the adopter free steady-state is stable if R_(A)<1.By consideringτ(the adoption experience of the adopters)as the bifurcation parameter,we have been able to obtain the critical value ofτresponsible for the periodic solutions due to Hopf bifurcation.The direction and stability analysis of bifurcating periodic solutions has been performed by using the arguments of normal form theory and the center manifold theorem.Exhaustive numerical simulations in the support of analytical results have been presented.展开更多
基金Project supported by the Natural Science Foundation of China (Grant Nos.61174094, 50977063, and 60904063)the Foundation of the Application Base and Frontier Technology Research Project of Tianjin, China (Grant No.10JCZDJC23100)the Development of Science and Technology Foundation of the Higher Education Institutions of Tianjin, China (Grant No.20080826)
文摘In this paper, a novel four dimensional hyper-chaotic system is coined based on the Chen system, which contains two quadratic terms and five system parameters. The proposed system can generate a hyper-chaotic attractor in wide parameters regions. By using the center manifold theorem and the local bifurcation theory, a pitchfork bifurcation is demonstrated to arise at the zero equilibrium point. Numerical analysis demonstrates that the hyper-cha^tic system can generate complex dynamical behaviors, e.g., a direct transition from quasi-periodic behavior to hyper-chaotic behavior. Finally, an electronic circuit is designed to implement the hyper-chaotic system, the experimental results are consist with the numerical simulations, which verifies the existence of the hyper-chaotic attractor. Due to the complex dynamic behaviors, this new hyper-cha^tic system is useful in the secure communication.
基金the Support Provided by the I.K.G. Punjab Technical University,Kapurthala,Punjab,India,where one of us(RK) is a Research Scholar
文摘In this article, a nonlinear mathematical model for innovation diffusion with stage structure which incorporates the evaluation stage (time delay) is proposed. The model is analyzed by considering the effects of external as well as internal influences and other demographic processes such as emigration, intrinsic growth rate, death rate, etc. The asymptotical stability of the various equilibria is investigated. By analyzing the exponential characteristic equation with delay-dependent coefficients obtained through the variational matrix, it is found that Hopf bifurcation occurs when the evaluation period (time delay, T) passes through a critical value. Applying the normal form theory and the center manifold argument, we de- rive the explicit formulas determining the properties of the bifurcating periodic solutions. To illustrate our theoretical analysis, some numerical simulations are also included.
文摘In this paper,we proposed an innovation diffusion model with three compartments to investigate the diffusion of an innovation(product)in a particular region.The model exhibits two equilibria,namely,the adopter-free and an interior equilibrium.The existence and local stability of the adopter-free and interior equilibria are explored in terms of the effective Basic Influence Number(BIN)R_(A).It is investigated that the adopter free steady-state is stable if R_(A)<1.By consideringτ(the adoption experience of the adopters)as the bifurcation parameter,we have been able to obtain the critical value ofτresponsible for the periodic solutions due to Hopf bifurcation.The direction and stability analysis of bifurcating periodic solutions has been performed by using the arguments of normal form theory and the center manifold theorem.Exhaustive numerical simulations in the support of analytical results have been presented.
基金supported by The National Natural Science Foundation of P.R.China(10961022,10901130)The Scientific Research Programmes of Colleges in Xinjiang(XJEDU2007G01,XJEDU2008S10)