BACKGROUND: Changes in central neurotransmitter expression play an important role in stress response and forms the basis for stress-induced psychological and behavior changes. OBJECTIVE: To observe the effects of di...BACKGROUND: Changes in central neurotransmitter expression play an important role in stress response and forms the basis for stress-induced psychological and behavior changes. OBJECTIVE: To observe the effects of different restraint stress intervals on brain monoamine neurotransmitter expression, and to investigate the correlation between stress response and neurotransmitter levels. DESIGN: Randomized controlled animal study. SETTING: Chinese Herb and Natural Medicine Institute, Pharmacological College of Jinan University. MATERIALS: Sixty 7-week-old male Kunming mice of clean grade, weighing 18-22 g, were provided by the Guangdong Medical Experimental Animal Center. The experiment was in accordance with animal ethics standards. METHODS: This study was performed at the Chinese Herb and Natural Medicine Institute, Pharmacological College of Jinan University from June 2006 to May 2007. A restraint device for mice was constructed according to published reports. Experimental mice were adaptively fed for 1 week and randomly divided into a control group (n = 10) and an experimental group (n = 50). The experimental group was sub-divided into five restraint intervals: 4, 8, 12, 18, and 24 hours (n = 10 mice per time point). Animals in the experimental group were not allowed to eat or drink during the restraint period. Mice in the control group did not undergo restraint, but had identical food and water restrictions. Cerebral cortex and hypothalamus were separated based on observational times and protein was extracted using perchloric acid. Central monoamine neurotransmitter levels were measured using high performance liquid chromatography with electrochemical detection. MAIN OUTCOME MEASURES: Levels of norepinephrine (NE), dopamine hydrochloride (DA), 3,4-dihydroxyphen-ylanetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleac-etic acid (5-HIAA) in the cerebral cortex and hypothalamus of mice. RESULTS: Sixty mice were included in the final analysis. ① NE levels in the cerebral cortex, hypothalamus, and plasma: four hours after restraint, NE levels in the cerebral cortex and hypothalamus ere significantly lower than control levels (P 〈 0.05). After 12 hours of restraint, NE levels in the experimental group were significantly higher than in the control group (P 〈 0.05). At 18 hours of restraint, there was no significant difference in NE levels in the cerebral cortex between the experimental group and the control group (P 〉 0.05). In addition, NE levels in the plasma gradually increased with longer restraint time, which was significant between experimental groups and the control group (P 〈 0.05-0.01). ② Levels of DA, DOPAC, and HVA in the cerebral cortex and hypothalamus: there were significant differences in DA levels in the cerebral cortex and hypothalamus after 18 and 24 hours of restraint compared to control animals (P 〈 0.05). DOPAC and HVA levels in the cerebral cortex were enhanced with longer restraint time, and there was significant difference in all restraint groups compared to control levels (P 〈 0.01), except for DOPAC levels after 4 hours of restraint. Moreover, DOPAC and HVA levels in the hypothalamus were enhanced with increasing restraint time. Levels of 5-HT and 5-HIAA in the cerebral cortex and hypothalamus: after short restraint periods and in the control group, 5-HT was not detectable. However, it was quantitatively detected at 12 hours after restraint. The 5-HT levels in the cerebral cortex and hypothalamus reached peak levels at 12 and 18 hours of restraint. 5-HIAA levels in the cerebral cortex and hypothalamus showed a similar tendency to increase with restraint time- 5-HIAA levels at 4-8 hours after restraint were significantly higher than control levels (P 〈 0.01). The 5-HIAA levels decreased at 12 hours after restraint, but remained significantly higher than the control group (P 〈 0.05). CONCLUSION: Restraint stress affects the hypothalamic-pituitary-adrenal (HPA) axis and causes changes in monoamine neurotransmitters in brain tissues, which suggests stress status could be improved by adjusting HPA axis and neurotransmitter levels in the brain.展开更多
The rhythmic movement is a spontaneous behavior due to the central pattern generator (CPG). At present, the CPG model only shows the spontaneous behavior, but does not refer to the instruction regulation role of the...The rhythmic movement is a spontaneous behavior due to the central pattern generator (CPG). At present, the CPG model only shows the spontaneous behavior, but does not refer to the instruction regulation role of the cerebral cortex. In this paper, a modified model based on the Matsuoka neural oscillator theory is presented to better show the regulation role of the cerebral cortex signal to the CPG neuronal network. The complex interaction between the input signal and other parameters in the CPG network is established, making all parameters of the CPG vary with the input signal. In this way, the effect of the input signal to the CPG network is enhanced so that the CPG network can express the self-regulation movement state instead of being limited to the spontaneous behavior, and thus the regulation role of the cerebral cortex signal can be reflected. Numerical simulation shows that the modified model can generate various movement forms with different modes, frequencies, and interchanges between them. It is revealed in theories that the cerebral cortex signal can regulate the mode and frequency of the gait in the ~ourse of the gait movement.展开更多
目的:系统评价经颅直流电刺激对帕金森患者运动功能的康复疗效,并比较经颅直流电刺激作用于不同靶点对帕金森患者运动功能的疗效差异,为临床中经颅直流电刺激的靶点选择提供理论依据。方法:计算机检索Cochrane Library、PubMed、Web of ...目的:系统评价经颅直流电刺激对帕金森患者运动功能的康复疗效,并比较经颅直流电刺激作用于不同靶点对帕金森患者运动功能的疗效差异,为临床中经颅直流电刺激的靶点选择提供理论依据。方法:计算机检索Cochrane Library、PubMed、Web of Science、中国知网、维普和万方数据库,以“帕金森、经颅直流电刺激”为中文检索词,以“Parkinson,transcranial direct current stimulation”为英文检索词,收集从各数据库建库至2023年1月发表的关于经颅直流电刺激改善帕金森患者运动功能的随机对照试验。使用Cochrane 5.1.0偏倚风险评估工具和PEDro量表对纳入研究进行质量评价。采用RevMan 5.4和Stata 17.0软件对结局指标进行Meta分析。结果:①最终纳入15项随机对照试验,PEDro量表评估显示均为高质量或极高质量研究。②Meta分析显示,与对照组相比经颅直流电刺激可显著提高UPDRS-Ⅲ评分(MD=-2.49,95%CI:-4.42至-0.55,P<0.05)、步频评分(MD=0.07,95%CI:0.03-0.11,P<0.05)和步速评分(MD=0.02,95%CI:0.00-0.05,P<0.05),但对BBS评分(MD=2.57,95%CI:-0.74-5.87,P>0.05)的提高不明显。③网状Meta分析概率排序结果显示,在UPDRS-Ⅲ评分方面,刺激靶点疗效的概率排序结果为背外侧前额叶皮质(52.4%)>初级皮质运动区(45.8%)>大脑中央点(1.8%)>常规康复治疗(0%);在步频评分方面,刺激靶点疗效的概率排序结果为小脑(50.1%)>大脑中央点(45.8%)>背外侧前额叶皮质(3.9%)>初级皮质运动区(0.2%)>常规康复治疗(0%);在步速评分方面,刺激靶点疗效的概率排序结果为小脑(64.8%)>背外侧前额叶皮质(23.8%)>大脑中央点(9.4%)>初级皮质运动区(1.7%)>常规康复治疗(0.4%);在BBS评分方面,刺激靶点疗效的概率排序结果为:小脑(77.4%)>背外侧前额叶皮质(20.7%)>大脑中央点(0.7%)>常规康复治疗(0.2%)。结论:经颅直流电刺激可显著改善帕金森患者运动功能,其中刺激背外侧前额叶皮质区域对改善帕金森患者运动协调方面疗效更佳,而刺激小脑区域对改善帕金森患者步行和平衡方面疗效更佳。展开更多
研究目的:探讨VEGF在中枢疲劳过程中的保护效应及其机制。研究方法:本研究采用体外培养大鼠大脑皮层神经元模型,施加缺氧刺激一周,并利用W estern B lotting和RT-PCR等技术分别检测添加VEGF组(V组)和对照组(H组)神经元的VEGF、GABA和H I...研究目的:探讨VEGF在中枢疲劳过程中的保护效应及其机制。研究方法:本研究采用体外培养大鼠大脑皮层神经元模型,施加缺氧刺激一周,并利用W estern B lotting和RT-PCR等技术分别检测添加VEGF组(V组)和对照组(H组)神经元的VEGF、GABA和H IF-1α表达情况及其生存率。结果:缺氧刺激可诱导神经元提高VEGF及GABA的表达量。VEGF干预不仅显著降低GABA的表达量(p<0.05),且从第4天开始显著提高了神经元的生存率(p<0.05)。结论:缺氧刺激可以诱导神经元分泌VEGF,且其对神经元具有明显的保护效应,该保护机制是通过"非经典"途径实现的。展开更多
基金the National Key Technologies R&D Program, No: 2006BAIO6A20-09
文摘BACKGROUND: Changes in central neurotransmitter expression play an important role in stress response and forms the basis for stress-induced psychological and behavior changes. OBJECTIVE: To observe the effects of different restraint stress intervals on brain monoamine neurotransmitter expression, and to investigate the correlation between stress response and neurotransmitter levels. DESIGN: Randomized controlled animal study. SETTING: Chinese Herb and Natural Medicine Institute, Pharmacological College of Jinan University. MATERIALS: Sixty 7-week-old male Kunming mice of clean grade, weighing 18-22 g, were provided by the Guangdong Medical Experimental Animal Center. The experiment was in accordance with animal ethics standards. METHODS: This study was performed at the Chinese Herb and Natural Medicine Institute, Pharmacological College of Jinan University from June 2006 to May 2007. A restraint device for mice was constructed according to published reports. Experimental mice were adaptively fed for 1 week and randomly divided into a control group (n = 10) and an experimental group (n = 50). The experimental group was sub-divided into five restraint intervals: 4, 8, 12, 18, and 24 hours (n = 10 mice per time point). Animals in the experimental group were not allowed to eat or drink during the restraint period. Mice in the control group did not undergo restraint, but had identical food and water restrictions. Cerebral cortex and hypothalamus were separated based on observational times and protein was extracted using perchloric acid. Central monoamine neurotransmitter levels were measured using high performance liquid chromatography with electrochemical detection. MAIN OUTCOME MEASURES: Levels of norepinephrine (NE), dopamine hydrochloride (DA), 3,4-dihydroxyphen-ylanetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleac-etic acid (5-HIAA) in the cerebral cortex and hypothalamus of mice. RESULTS: Sixty mice were included in the final analysis. ① NE levels in the cerebral cortex, hypothalamus, and plasma: four hours after restraint, NE levels in the cerebral cortex and hypothalamus ere significantly lower than control levels (P 〈 0.05). After 12 hours of restraint, NE levels in the experimental group were significantly higher than in the control group (P 〈 0.05). At 18 hours of restraint, there was no significant difference in NE levels in the cerebral cortex between the experimental group and the control group (P 〉 0.05). In addition, NE levels in the plasma gradually increased with longer restraint time, which was significant between experimental groups and the control group (P 〈 0.05-0.01). ② Levels of DA, DOPAC, and HVA in the cerebral cortex and hypothalamus: there were significant differences in DA levels in the cerebral cortex and hypothalamus after 18 and 24 hours of restraint compared to control animals (P 〈 0.05). DOPAC and HVA levels in the cerebral cortex were enhanced with longer restraint time, and there was significant difference in all restraint groups compared to control levels (P 〈 0.01), except for DOPAC levels after 4 hours of restraint. Moreover, DOPAC and HVA levels in the hypothalamus were enhanced with increasing restraint time. Levels of 5-HT and 5-HIAA in the cerebral cortex and hypothalamus: after short restraint periods and in the control group, 5-HT was not detectable. However, it was quantitatively detected at 12 hours after restraint. The 5-HT levels in the cerebral cortex and hypothalamus reached peak levels at 12 and 18 hours of restraint. 5-HIAA levels in the cerebral cortex and hypothalamus showed a similar tendency to increase with restraint time- 5-HIAA levels at 4-8 hours after restraint were significantly higher than control levels (P 〈 0.01). The 5-HIAA levels decreased at 12 hours after restraint, but remained significantly higher than the control group (P 〈 0.05). CONCLUSION: Restraint stress affects the hypothalamic-pituitary-adrenal (HPA) axis and causes changes in monoamine neurotransmitters in brain tissues, which suggests stress status could be improved by adjusting HPA axis and neurotransmitter levels in the brain.
基金supported by the National Natural Science Foundation of China (Nos.10872068 and 10672057)the Fundamental Research Fund for the Central Universities
文摘The rhythmic movement is a spontaneous behavior due to the central pattern generator (CPG). At present, the CPG model only shows the spontaneous behavior, but does not refer to the instruction regulation role of the cerebral cortex. In this paper, a modified model based on the Matsuoka neural oscillator theory is presented to better show the regulation role of the cerebral cortex signal to the CPG neuronal network. The complex interaction between the input signal and other parameters in the CPG network is established, making all parameters of the CPG vary with the input signal. In this way, the effect of the input signal to the CPG network is enhanced so that the CPG network can express the self-regulation movement state instead of being limited to the spontaneous behavior, and thus the regulation role of the cerebral cortex signal can be reflected. Numerical simulation shows that the modified model can generate various movement forms with different modes, frequencies, and interchanges between them. It is revealed in theories that the cerebral cortex signal can regulate the mode and frequency of the gait in the ~ourse of the gait movement.
文摘目的:系统评价经颅直流电刺激对帕金森患者运动功能的康复疗效,并比较经颅直流电刺激作用于不同靶点对帕金森患者运动功能的疗效差异,为临床中经颅直流电刺激的靶点选择提供理论依据。方法:计算机检索Cochrane Library、PubMed、Web of Science、中国知网、维普和万方数据库,以“帕金森、经颅直流电刺激”为中文检索词,以“Parkinson,transcranial direct current stimulation”为英文检索词,收集从各数据库建库至2023年1月发表的关于经颅直流电刺激改善帕金森患者运动功能的随机对照试验。使用Cochrane 5.1.0偏倚风险评估工具和PEDro量表对纳入研究进行质量评价。采用RevMan 5.4和Stata 17.0软件对结局指标进行Meta分析。结果:①最终纳入15项随机对照试验,PEDro量表评估显示均为高质量或极高质量研究。②Meta分析显示,与对照组相比经颅直流电刺激可显著提高UPDRS-Ⅲ评分(MD=-2.49,95%CI:-4.42至-0.55,P<0.05)、步频评分(MD=0.07,95%CI:0.03-0.11,P<0.05)和步速评分(MD=0.02,95%CI:0.00-0.05,P<0.05),但对BBS评分(MD=2.57,95%CI:-0.74-5.87,P>0.05)的提高不明显。③网状Meta分析概率排序结果显示,在UPDRS-Ⅲ评分方面,刺激靶点疗效的概率排序结果为背外侧前额叶皮质(52.4%)>初级皮质运动区(45.8%)>大脑中央点(1.8%)>常规康复治疗(0%);在步频评分方面,刺激靶点疗效的概率排序结果为小脑(50.1%)>大脑中央点(45.8%)>背外侧前额叶皮质(3.9%)>初级皮质运动区(0.2%)>常规康复治疗(0%);在步速评分方面,刺激靶点疗效的概率排序结果为小脑(64.8%)>背外侧前额叶皮质(23.8%)>大脑中央点(9.4%)>初级皮质运动区(1.7%)>常规康复治疗(0.4%);在BBS评分方面,刺激靶点疗效的概率排序结果为:小脑(77.4%)>背外侧前额叶皮质(20.7%)>大脑中央点(0.7%)>常规康复治疗(0.2%)。结论:经颅直流电刺激可显著改善帕金森患者运动功能,其中刺激背外侧前额叶皮质区域对改善帕金森患者运动协调方面疗效更佳,而刺激小脑区域对改善帕金森患者步行和平衡方面疗效更佳。
文摘研究目的:探讨VEGF在中枢疲劳过程中的保护效应及其机制。研究方法:本研究采用体外培养大鼠大脑皮层神经元模型,施加缺氧刺激一周,并利用W estern B lotting和RT-PCR等技术分别检测添加VEGF组(V组)和对照组(H组)神经元的VEGF、GABA和H IF-1α表达情况及其生存率。结果:缺氧刺激可诱导神经元提高VEGF及GABA的表达量。VEGF干预不仅显著降低GABA的表达量(p<0.05),且从第4天开始显著提高了神经元的生存率(p<0.05)。结论:缺氧刺激可以诱导神经元分泌VEGF,且其对神经元具有明显的保护效应,该保护机制是通过"非经典"途径实现的。