Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control s...Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size,and inertial parameter has seldom been tackled and systematically estimated.This paper presents a dual central difference Kalman filter(DCDKF)where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters,such as vehicle sideslip angle,vehicle mass,vehicle yaw moment of inertia,the distance from the front axle to centre of gravity.The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs.The four-wheel nonlinear vehicle dynamics estimation model considering payload variations,Pacejka tire model,wheel and motor dynamics model is developed,the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory.To address system nonlinearities in vehicle dynamics estimation,the DCDKF and dual extended Kalman filter(DEKF)are also investigated and compared.Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-CarsimR.The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions.This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability.展开更多
In order to obtain a compact and exact representation of 2D range scans,UKF(unscented Kalman filter) and CDKF(central difference Kalman filter) were proposed for extracting the breakpoint of the laser data. Line extra...In order to obtain a compact and exact representation of 2D range scans,UKF(unscented Kalman filter) and CDKF(central difference Kalman filter) were proposed for extracting the breakpoint of the laser data. Line extraction was performed in every continuous breakpoint region by detecting the optimal angle and the optimal distance in polar coordinates,and every breakpoint area was constructed with two points. As a proof to the method,an experiment was performed by a mobile robot equipped with one SICK laser rangefinder,and the results of UKF/CDKF in breakpoint detection and line extraction were compared with those of the EKF(extended Kalman filter) . The results show that the exact geometry of the raw laser data of the environments can be obtained by segmented raw measurements(combining the proposed breakpoint detection approach with the line extraction method) ,and method UKF is the best one compared with CDKF and EKF.展开更多
The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a nov...The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed.The framework of interactive multiple model(IMM) is used to realize identification of motion pattern,and a central difference Kalman filter(CDKF) is selected as the model filter of IMM.Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information,the hardware cost of the observation system for multiple sensors is adopted,meanwhile,according to the data assimilation technique in Ensemble Kalman filter(En KF),a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise.On that basis,these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way.The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors.The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51905329,51975118)Foundation of State Key Laboratory of Automotive Simulation and Control of China(Grant No.20181112).
文摘Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size,and inertial parameter has seldom been tackled and systematically estimated.This paper presents a dual central difference Kalman filter(DCDKF)where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters,such as vehicle sideslip angle,vehicle mass,vehicle yaw moment of inertia,the distance from the front axle to centre of gravity.The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs.The four-wheel nonlinear vehicle dynamics estimation model considering payload variations,Pacejka tire model,wheel and motor dynamics model is developed,the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory.To address system nonlinearities in vehicle dynamics estimation,the DCDKF and dual extended Kalman filter(DEKF)are also investigated and compared.Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-CarsimR.The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions.This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability.
基金Project(2003AA1Z2130)supported by the National High-Tech Research and Development Program of ChinaProject(2005C11001-02)supported by the Science and Technology Project of Zhejiang Province,China
文摘In order to obtain a compact and exact representation of 2D range scans,UKF(unscented Kalman filter) and CDKF(central difference Kalman filter) were proposed for extracting the breakpoint of the laser data. Line extraction was performed in every continuous breakpoint region by detecting the optimal angle and the optimal distance in polar coordinates,and every breakpoint area was constructed with two points. As a proof to the method,an experiment was performed by a mobile robot equipped with one SICK laser rangefinder,and the results of UKF/CDKF in breakpoint detection and line extraction were compared with those of the EKF(extended Kalman filter) . The results show that the exact geometry of the raw laser data of the environments can be obtained by segmented raw measurements(combining the proposed breakpoint detection approach with the line extraction method) ,and method UKF is the best one compared with CDKF and EKF.
基金Supported by the Postdoctoral Science Foundation of China(No.2014M551999)the Open Foundation of Key Laboratory of Spectral Imaging Technology of the Chinese Academy of Sciences(No.LSIT201711D)
文摘The selection and optimization of model filters affect the precision of motion pattern identification and state estimation in maneuvering target tracking directly.Aiming at improving performance of model filters,a novel maneuvering target tracking algorithm based on central difference Kalman filter in observation bootstrapping strategy is proposed.The framework of interactive multiple model(IMM) is used to realize identification of motion pattern,and a central difference Kalman filter(CDKF) is selected as the model filter of IMM.Considering the advantage of multi-sensor fusion method in improving the stability and reliability of observation information,the hardware cost of the observation system for multiple sensors is adopted,meanwhile,according to the data assimilation technique in Ensemble Kalman filter(En KF),a bootstrapping observation set is constructed by integrating the latest observation and the prior information of observation noise.On that basis,these bootstrapping observations are reasonably used to optimize the filtering performance of CDKF by means of weight fusion way.The object of new algorithm is to improve the tracking precision of observed target by the multi-sensor fusion method without increasing the number of physical sensors.The theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.