基于KISS(Keep it simple,stupid)创新设计理念,设计了铰杆式二次正交增力离心式离合器。介绍了其工作原理,给出了其输出力和输出转矩、接合角速度和接合转速、额定角速度和额定转速、弹簧最大工作载荷的计算公式。上述力学计算公式,对...基于KISS(Keep it simple,stupid)创新设计理念,设计了铰杆式二次正交增力离心式离合器。介绍了其工作原理,给出了其输出力和输出转矩、接合角速度和接合转速、额定角速度和额定转速、弹簧最大工作载荷的计算公式。上述力学计算公式,对具体工程设计具有指导意义。铰杆式二次正交增力离心式离合器结构紧凑,制造成本较普通或一次正交增力离心式离合器增加甚微,但输出转矩的能力显著提高。这种新型的离心式离合器适于在大功率或低速场合应用,其设计原理也可移植用于设计超速制动器。展开更多
The mechanism of a hydro-viscous soft start is of great importance in the design of a hydro-viscous clutch and its control system. To explain the mechanism of a hydro-viscous soft start, the startup process of a belt ...The mechanism of a hydro-viscous soft start is of great importance in the design of a hydro-viscous clutch and its control system. To explain the mechanism of a hydro-viscous soft start, the startup process of a belt conveyor was numerically analyzed with the modified Reynolds equation, an energy equation and a temperature-viscosity equation. The effect of temperature and grooves of the friction disk surface on torque transfer and load capacity of the oil film have also been analyzed. The results show that 1) the grooves are the basis of forming dynamic pressure but they may reduce the capacity of torque transfer to a certain extent, 2) during the startup process, temperature has little effect on torque transfer and load capacity and the variation in load capacity of the oil film is very small, indicating that it is preferable to use the flow rate as a control object than the pressure of the feed cylinder. The results have been verified by an experiment.展开更多
文摘基于KISS(Keep it simple,stupid)创新设计理念,设计了铰杆式二次正交增力离心式离合器。介绍了其工作原理,给出了其输出力和输出转矩、接合角速度和接合转速、额定角速度和额定转速、弹簧最大工作载荷的计算公式。上述力学计算公式,对具体工程设计具有指导意义。铰杆式二次正交增力离心式离合器结构紧凑,制造成本较普通或一次正交增力离心式离合器增加甚微,但输出转矩的能力显著提高。这种新型的离心式离合器适于在大功率或低速场合应用,其设计原理也可移植用于设计超速制动器。
文摘The mechanism of a hydro-viscous soft start is of great importance in the design of a hydro-viscous clutch and its control system. To explain the mechanism of a hydro-viscous soft start, the startup process of a belt conveyor was numerically analyzed with the modified Reynolds equation, an energy equation and a temperature-viscosity equation. The effect of temperature and grooves of the friction disk surface on torque transfer and load capacity of the oil film have also been analyzed. The results show that 1) the grooves are the basis of forming dynamic pressure but they may reduce the capacity of torque transfer to a certain extent, 2) during the startup process, temperature has little effect on torque transfer and load capacity and the variation in load capacity of the oil film is very small, indicating that it is preferable to use the flow rate as a control object than the pressure of the feed cylinder. The results have been verified by an experiment.